[1] RADHAKRISHNAN P, TALUKDAR P, VARMA V. ELDEN: improved entity linking using densified knowledge graphs[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2018: 1844-1853.
[2] ZHU Y K, ZHANG C, RÉ C, et al. Building a large-scale multimodal knowledge base system for answering visual queries[EB/OL]. [2024-02-23]. https://arxiv.org/abs/1507. 05670.
[3] ZHANG Z H, LIU H L, CHEN J Y, et al. An industry evaluation of embedding-based entity alignment[C]//Proceedings of the 28th International Conference on Computational Linguistics: Industry Track, 2020: 179-189.
[4] SUN R, CAO X Z, ZHAO Y, et al. Multi-modal knowledge graphs for recommender systems[C]//Proceedings of the 29th ACM International Conference on Information and Knowledge Management. New York: ACM, 2020: 1405-1414.
[5] BORDES A, USUNIER N, GARCIA-DURÁN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2013: 2787-2795.
[6] DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2D knowledge graph embeddings[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. Palo Alto: AAAI, 2018: 1811-1818.
[7] GARCÍA-DURÁN A, NIEPERT M. KBlrn: end-to-end learning of knowledge base representations with latent, relational, and numerical features[C]//Proceedings of the 34th Conference on Uncertainty in Artificial Intelligence, 2018: 372-381.
[8] LIANG S, ZHU A J, ZHANG J S, et al. Hyper-node relational graph attention network for multi-modal knowledge graph completion[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(2): 1-21.
[9] ZHANG Z Q, WANG J, YE J P, et al. Rethinking graph convolutional networks in knowledge graph completion[C]//Proceedings of the ACM Web Conference 2022. New York: ACM, 2022: 798-807.
[10] 杜雪盈, 刘名威, 沈立炜, 等. 面向链接预测的知识图谱表示学习方法综述[J]. 软件学报, 2024, 35(1): 87-117.
DU X Y, LIU M W, SHEN L W, et al. Survey on representation learning methods of knowledge graph for link prediction[J]. Journal of Software, 2024, 35(1): 87-117.
[11] SUN Z, DENG Z, NIE J Y, et al. RotatE: knowledge graph embedding by relational rotation in complex space[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[12] EBISU T, ICHISE R. TorusE: knowledge graph embedding on a lie group[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 1819-1826.
[13] NICKEL M, TRESP V, KRIEGEL H P, et al. A three-way model for collective learning on multi-relational data[C]//Proceedings of the 28th International Conference on Machine Learning, 2011: 809-816.
[14] YANG B, YIH W T, HE X, et al. Embedding entities and relations for learning and inference in knowledge bases[C]// Proceedings of the 2015 International Conference on Learning Representations, San Diego, May 7-9, 2015: 1412-1420.
[15] ZHOU Z H, WANG C, FENG Y, et al. JointE: jointly utilizing 1D and 2D convolution for knowledge graph embedding[J]. Knowledge-Based Systems, 2022, 240: 108100.
[16] JIANG D, WANG R G, YANG J, et al. Kernel multi-attention neural network for knowledge graph embedding[J]. Knowledge-Based Systems, 2021, 227: 107188.
[17] ZHANG Z L, LI Z F, LIU H, et al. Multi-scale dynamic convolutional network for knowledge graph embedding[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2335-2347.
[18] VASHISHTH S, SANYAL S, NITIN V, et al. InteractE: improving convolution-based knowledge graph embeddings by increasing feature interactions[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3): 3009-3016.
[19] SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling relational data with graph convolutional networks[C]//Proceedings of the 15th International Conference on the Semantic Web. Cham: Springer, 2018: 593-607.
[20] VASHISHTH S, SANYAL S, NITIN V, et al. Composition-based multi-relational graph convolutional networks[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020.
[21] YAO L, MAO C S, LUO Y. KG-BERT: BERT for knowledge graph completion[EB/OL]. [2024-02-23]. https://arxiv.org/abs/1909.03193.
[22] WANG L, ZHAO W, WEI Z Y, et al. SimKGC: simple contrastive knowledge graph completion with pre-trained language models[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 4281-4294.
[23] XIE R B, LIU Z Y, LUAN H B, et al. Image-embodied knowledge representation learning[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, 2017: 3140-3146.
[24] WANG Z K, LI L J, LI Q D, et al. Multimodal data enhanced representation learning for knowledge graphs[C]//Proceedings of the 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8.
[25] WANG M, WANG S, YANG H, et al. Is visual context really helpful for knowledge graph? A representation learning perspective[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York: ACM, 2021: 2735-2743.
[26] ZHANG Y Y, FANG Q, QIAN S S, et al. Multi-modal multi-relational feature aggregation network for medical knowledge representation learning[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 3956-3965.
[27] ZHAO Y, CAI X R, WU Y K, et al. MoSE: modality split and ensemble for multimodal knowledge graph completion[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2022: 10527-10536.
[28] LI X H, ZHAO X Y, XU J X, et al. IMF: interactive multimodal fusion model for link prediction[C]//Proceedings of the ACM Web Conference 2023. New York: ACM, 2023: 2572-2580.
[29] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 1247-1250.
[30] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a large ontology from Wikipedia and WordNet[J]. Journal of Web Semantics, 2008, 6(3): 203-217.
[31] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]//Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference. Berlin, Heidelberg: Springer, 2007: 722-735.
[32] SHANG C, TANG Y, HUANG J, et al. End-to-end structure- aware convolutional networks for knowledge base completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3060-3067. |