[1] 刘耿耿, 郭文忠. 超大规模集成电路布线设计理论与算法[M]. 北京: 清华大学出版社, 2022.
LIU G G, GUO W Z. Theory and algorithm for very large scale integration routing[M]. Beijing: Tsinghua University Press, 2022.
[2] VENKATAIAH C, JAYAMMA M, RAO Y M, et al. An advanced technique for performance improvement in VLSI inter-connects[J]. Journal of VLSI Design and Signal Processing, 2023, 9(1): 1-6.
[3] RAZIF R A M, MAHARUM S M M, HASANI A H, et al. Mitigation techniques for crosstalk in ICs[J]. IOP Conference Series: Materials Science and Engineering, 2019, 701(1): 012037.
[4] 刘耿耿, 黄逸飞, 王鑫, 等. 基于混合离散粒子群优化的Slew约束下X结构Steiner最小树算法[J]. 计算机学报, 2021, 44(12): 2542-2559.
LIU G G, HUANG Y F, WANG X, et al. Hybrid discrete particle swarm optimization algorithm for X-architecture Steiner minimal tree construction with slew constraints[J]. Chinese Journal of Computers, 2021, 44(12): 2542-2559.
[5] ZHOU R P, LIU G G, GUO W Z, et al. An X-architecture SMT algorithm based on competitive swarm optimizer[C]//Proceedings of the 2021 International Conference on Web Information Systems and Applications. Cham: Springer, 2021: 393-404.
[6] WARME D M, WINTER P, ZACHARIASEN M. Exact algorithms for plane Steiner tree problems: a computational study[M]//Advances in Steiner trees. Boston: Springer US, 2000: 81-116.
[7] CHU C, WONG Y C. FLUTE: fast lookup table based rectilinear Steiner minimal tree algorithm for VLSI design[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2008, 27(1): 70-83.
[8] LIN S D, KIM D H. Construction of all rectilinear Steiner minimum trees on the hanan grid and its applications to VLSI design[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39(6): 1165-1176.
[9] KHAN A, LAHA S, SARKAR S K. A novel particle swarm optimization approach for VLSI routing[C]//Proceedings of the 2013 3rd IEEE International Advance Computing Conference. Piscataway: IEEE, 2013: 258-262.
[10] JULSTROM B A. A scalable genetic algorithm for the rectilinear Steiner problem[C]//Proceedings of the 2002 Congress on Evolutionary Computation. Piscataway: IEEE, 2002: 1169-1173.
[11] GREENE W A. A tree-based genetic algorithm for building rectilinear Steiner arborescences[C]//Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2006: 1179-1186.
[12] AJWANI G, CHU C, MAK W K. FOARS: flute based obstacle-avoiding rectilinear Steiner tree construction[C]//Proceedings of the 2010 International Symposium on Physical Design. New York: ACM, 2010: 27-34.
[13] LI L, YOUNG E F Y. Obstacle-avoiding rectilinear Steiner tree construction[C]//Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design. Piscataway: IEEE, 2008: 523-528.
[14] LIN K W, LIN Y S, LI Y L, et al. A maze routing-based methodology with bounded exploration and path-assessed retracing for constrained multilayer obstacle-avoiding rectilinear Steiner tree construction[J]. ACM Transactions on Design Automation of Electronic Systems, 2018, 23(4): 1-26.
[15] HU Y, JING T, HONG X L, et al. An-OARSMan: obstacle-avoiding routing tree construction with good length performance[C]//Proceedings of the 2005 Asia and South Pacific Design Automation Conference. Piscataway: IEEE, 2005: 7-12.
[16] UTYAMISHEV D, PARTIN-VAISBAND I. Multiterminal pathfinding in practical VLSI systems with deep neural networks[J]. ACM Transactions on Design Automation of Electronic Systems, 2023, 28(4): 1-19.
[17] KUNDU S, ROY S, MUKHERJEE S. An efficient obstacle-avoiding rectilinear Steiner tree construction method using PB-SAT[J]. IETE Journal of Research, 2023, 69(6): 3346-3356.
[18] ZHANG T C, Lü Z P, DING J W. Guiding solution based local search for obstacle-avoiding rectilinear Steiner minimal tree problem[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(1): 440-453.
[19] TEIG S. Session details: the X architecture: not your father’s diagonal wiring[C]//Proceedings of the 2002 International Workshop on System-Level Interconnect Prediction. New York: ACM, 2002: 33-37.
[20] COULSTON C S. Constructing exact octagonal Steiner minimal trees[C]//Proceedings of the 13th ACM Great Lakes Symposium on VLSI. New York: ACM, 2003: 1-6.
[21] SAMANTA T, GHOSAL P, RAHAMAN H, et al. A heuristic method for constructing hexagonal Steiner minimal trees for routing in VLSI[C]//Proceedings of the 2006 IEEE International Symposium on Circuits and Systems. Piscataway: IEEE, 2006: 1788-1791.
[22] CHIANG C, CHIANG C S. Octilinear Steiner tree construction[C]//Proceedings of the 2002 45th Midwest Symposium on Circuits and Systems. Piscataway: IEEE, 2002: 603-606.
[23] 张一帆, 宋威. 极限学习决策网络指导的多目标粒子群算法[J]. 计算机科学与探索, 2024, 18(6): 1513-1525.
ZHANG Y F, SONG W. Multi-objective particle swarm optimization algorithm guided by extreme learning decision network[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(6): 1513-1525.
[24] 赵晓妍, 宋威. 聚集度指标引导的注意力学习粒子群优化算法[J]. 计算机科学与探索, 2023, 17(8): 1852-1866.
ZHAO X Y, SONG W. Attention learning particle swarm optimization algorithm guided by aggregation indicator[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1852-1866.
[25] XIE P, MA B, WANG B, et al. 3D path planning of the solar powered UAV in the urban-mountainous environment with multi-objective and multi-constraint based on the enhanced sparrow search algorithm incorporating the Levy flight strategy[J]. Guidance, Navigation and Control, 2024, 4(1):2450005.
[26] LI Z, GUO J, GAO X, et al. A multi-strategy improved sparrow search algorithm of large-scale refrigeration system: optimal loading distribution of chillers[J]. Applied Energy, 2023, 349: 121623.
[27] MA X, LIU Q. An artificial fish swarm algorithm for Steiner tree problem[C]//Proceedings of the 2009 IEEE International Conference on Fuzzy Systems. Piscataway: IEEE, 2009: 59-63.
[28] LIU G G, CHEN G L, GUO W Z. DPSO based octagonal Steiner tree algorithm for VLSI routing[C]//Proceedings of the 2012 IEEE 5th International Conference on Advanced Computational Intelligence. Piscataway: IEEE, 2012: 383-387.
[29] HUANG X, LIU G G, GUO W Z, et al. Obstacle-avoiding algorithm in X-architecture based on discrete particle swarm optimization for VLSI design[J]. ACM Transactions on Design Automation of Electronic Systems, 2015, 20(2): 1-28.
[30] HUANG X, GUO W Z, LIU G G, et al. FH-OAOS[J]. ACM Transactions on Design Automation of Electronic Systems, 2016, 21(3): 1-31.
[31] LIU G G, YANG L L, XU S J, et al. X-architecture Steiner minimal tree algorithm based on multi-strategy optimization discrete differential evolution[J]. PeerJ Computer Science, 2021, 7: e473.
[32] LIU G G, CHEN X H, ZHOU R P, et al. Social learning discrete particle swarm optimization based two-stage X-routing for IC design under intelligent edge computing architecture[J]. Applied Soft Computing, 2021, 104: 107215.
[33] XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[34] FEO T A, RESENDE M G C. Greedy randomized adaptive search procedures[J]. Journal of Global Optimization, 1995, 6(2): 109-133.
[35] LIU G G, ZHU Y H, XU S J, et al. Performance-driven X-architecture routing algorithm for artificial intelligence chip design in smart manufacturing[J]. ACM Transactions on Management Information Systems, 2022, 13(4): 1-20.
[36] LIU G G, ZHU Y H, XU S J, et al. PSO-based power-driven X-routing algorithm in semiconductor design for predictive intelligence of IoT applications[J]. Applied Soft Computing, 2022, 114: 108114. |