计算机科学与探索

• 学术研究 •    下一篇

基于图深度学习的司法判决预测综述

张亦菲, 李艳玲, 葛凤培   

  1. 1. 内蒙古师范大学 计算机科学技术学院, 呼和浩特 010022
    2. 无穷维哈密顿系统及其算法应用教育部重点实验室(内蒙古师范大学), 呼和浩特 010022
    3. 北京邮电大学 图书馆, 北京 100876

Review of Legal Judgment Prediction Based on Graph Deep Learning

ZHANG Yifei,  LI Yanling,  GE Fengpei   

  1. 1. College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
    2. Key Laboratory of Infinite-dimensional Hamiltonian System and Algorithm Application (Inner Mongolia Normal University), Ministry of Education, Hohhot 010022, China
    3. Beijing University of Posts and Telecommunications, Library, Beijing 100876, China

摘要: 司法判决预测旨在根据案件事实描述预测判决结果,如案件所涉及法条、罪名、刑期。近年来,图深度学习方法在法律人工智能领域取得了显著成效,能够有效地捕捉案件事实描述之间的复杂关系和法条之间的依赖关系。该文全面归纳并总结了图深度学习在司法判决预测任务上最新的研究成果。首先明确司法判决预测的任务定义,并回顾了早期的研究。其次,重点关注基于图结构的司法判决预测的文本表示方法,具体包括因果图、要素图和知识图谱在本领域中的应用。随后,分析图深度学习在司法判决预测中的相关方法,涵盖图蒸馏算子、图卷积网络、门控图神经网络、异构图神经网络、图注意力网络、图推理网络。接下来,介绍了CAIL、ELAM等主流数据集以及司法判决预测其他相关数据集,并整理了评估指标。最后,展望司法判决预测的未来研究趋势,强调了图深度学习在此领域的持续创新和应用前景。该文的工作展现出图深度学习方法在司法判决预测中具有巨大的潜力,能够为法律人工智能领域的发展提供新的视角和方法,并为相关实践应用提供了参考。

关键词: 法律人工智能, 司法判决预测, 图深度学习

Abstract: Legal judgment prediction aims to predict judgment results based on the description of case facts, such as law articles, charges, and term of penalty involved in the case. In recent years, graph deep learning methods have achieved remarkable success in the field of legal artificial intelligence, capturing complex relationships between case facts and the dependencies between law articles effectively. This paper summarizes the latest achievements in graph deep learning methods related to legal judgment prediction comprehensively. Firstly, the paper introduces the task definition and early research of legal judgment prediction. Secondly, it focuses on text representation methods for decision prediction based on graph structures, including causal graphs, element graphs, and knowledge graphs. Subsequently, the paper analyzes prediction methods based on graph deep learning, covering graph distillation operators, graph convolutional networks, gated graph neural networks, heterogeneous graph neural networks, graph attention networks, and graph reasoning networks. Thirdly, it arranges mainstream datasets and evaluation indicators. Final section envisions future research trends in legal judgment prediction, emphasizing the continuous innovation and application prospects of graph deep learning in this domain. The work demonstrates the immense potential of graph deep learning methods in legal judgment prediction, offering new perspectives and methodologies for the development of legal artificial intelligence and providing a reference for related practical applications.

Key words: legal artificial intelligence, legal judgment prediction, graph deep learning