[1] HONG M, JUNG J J. Multi-sided recommendation based on social tensor factorization[J]. Information Sciences, 2018, 447: 140-156.
[2] PORIA S, HAZARIKA D, MAJUMDER N, et al. Beneath the tip of the iceberg: current challenges and new directions in sentiment analysis research[J]. IEEE Transactions on Affec-tive Computing, 2023, 14(1): 108-132.
[3] BAGHER ZADEH A, LIANG P P, PORIA S, et al. Multimodal language analysis in the wild: CMU-MOSEI dataset and interpretable dynamic fusion graph[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2236-2246.
[4] PANG B, LEE L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[C]//Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics. Stroudsburg: ACL, 2004: 271-278.
[5] VINODHINI G, CHANDRASEKARAN R M. Sentiment analysis and opinion mining: a survey[J]. International Journal of Advanced Research in Computer Science and Software Engineering, 2012, 2(6): 282-292.
[6] ZADEH A, CHEN M H, PORIA S, et al. Tensor fusion network for multimodal sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 1103-1114.
[7] ZADEH A, LIANG P P, MAZUMDER N, et al. Memory fusion network for multi-view sequential learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5634-5641.
[8] TSAI Y H, BAI S J, LIANG P P, et al. Multimodal transformer for unaligned multimodal language sequences[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 6558-6569.
[9] WANG D, LIU S, WANG Q, et al. Cross-modal enhancement network for multimodal sentiment analysis[J]. IEEE Transactions on Multimedia, 2023, 25: 4909-4921.
[10] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2019: 4171-4186.
[11] YANG Z L, DAI Z H, YANG Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[EB/OL]. [2024-09-13]. https://arxiv.org/abs/1906.08237.
[12] LIU Y H, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[EB/OL]. [2024-09-13]. https://arxiv.org/abs/1907.11692.
[13] KE P, JI H Z, LIU S Y, et al. SentiLARE: sentiment-aware language representation learning with linguistic knowledge[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 6975-6988.
[14] DEGOTTEX G, KANE J, DRUGMAN T, et al. COVAREP: a collaborative voice analysis repository for speech technologies[C]//Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2014: 960-964.
[15] ZHU Q, YEH M C, CHENG K T, et al. Fast human detection using a cascade of histograms of oriented gradients[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2006: 1491-1498.
[16] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543.
[17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[18] LIU Z, SHEN Y, LAKSHMINARASIMHAN V B, et al. Efficient low-rank multimodal fusion with modality-specific factors[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2018: 2247-2256.
[19] GHOSAL D, AKHTAR M S, CHAUHAN D, et al. Contextual inter-modal attention for multi-modal sentiment analysis[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3454-3466.
[20] SUN L C, LIAN Z, LIU B, et al. Efficient multimodal transformer with dual-level feature restoration for robust multimodal sentiment analysis[J]. IEEE Transactions on Affective Computing, 2024, 15(1): 309-325.
[21] HUAN R H, ZHONG G W, CHEN P, et al. UniMF: a unified multimodal framework for multimodal sentiment analysis in missing modalities and unaligned multimodal sequences[J]. IEEE Transactions on Multimedia, 2024, 26: 5753-5768.
[22] HAZARIKA D, ZIMMERMANN R, PORIA S. MISA: modality-invariant and-specific representations for multimodal sentiment analysis[C]//Proceedings of the 28th ACM International Conference on Multimedia. New York: ACM, 2020: 1122-1131.
[23] YU W M, XU H, YUAN Z Q, et al. Learning modality-specific representations with self-supervised multi-task learning for multimodal sentiment analysis[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 10790-10797.
[24] CARUANA R. Multitask learning[J]. Machine Learning, 1997, 28(1): 41-75.
[25] BAXTER J. A model of inductive bias learning[J]. Journal of Artificial Intelligence Research, 2000, 12: 149-198.
[26] THRUN S. Is learning the n-th thing any easier than learning the first?[C]//Proceedings of the 9th International Conference on Neural Information Processing Systems, 1995: 640-646.
[27] CARUANA R A. Multitask learning: a knowledge-based source of inductive bias[C]//Proceedings of the 10th International Conference on Machine Learning, 1993: 41-48.
[28] DUONG L, COHN T, BIRD S, et al. Low resource dependency parsing: cross-lingual parameter sharing in a neural network parser[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg: ACL, 2015: 845-850.
[29] AKHTAR M S, CHAUHAN D S, GHOSAL D, et al. Multi-task learning for multi-modal emotion recognition and sentiment analysis[EB/OL]. [2024-09-14]. https://arxiv.org/abs/1905.05812.
[30] CHAUHAN D S, DHANUSH S R, EKBAL A, et al. Sentiment and emotion help sarcasm? A multi-task learning frame-work for multi-modal sarcasm, sentiment and emotion analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 4351-4360.
[31] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[32] MISRA D. Mish: a self regularized non-monotonic activation function[EB/OL]. [2024-09-14]. https://arxiv.org/abs/1908.08681.
[33] ZADEH A, ZELLERS R, PINCUS E, et al. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online opinion videos[EB/OL]. [2024-09-14]. https://arxiv.org/abs/1606.06259.
[34] ZADEH A, LIANG P P, PORIA S, et al. Multi-attention recurrent network for human communication comprehension[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1): 5642-5649.
[35] LIN H, ZHANG P L, LING J D, et al. PS-Mixer: a polar-vector and strength-vector mixer model for multimodal sentiment analysis[J]. Information Processing and Management, 2023, 60(2): 103229.
[36] TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems, 2021: 24261-24272.
[37] RAHMAN W, HASAN M K, LEE S W, et al. Integrating multimodal information in large pretrained transformers[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 2359-2369.
[38] LI Y Q, WENG W X, LIU C, et al. CSMF-SPC: multimodal sentiment analysis model with effective context semantic modality fusion and sentiment polarity correction[J]. Pattern Analysis and Applications, 2024, 27(3): 104.
[39] LUO Y Y, WU R, LIU J F, et al. Balanced sentimental information via multimodal interaction model[J]. Multimedia Systems, 2024, 30(1): 10.
[40] LIU Z J, CAI L, YANG W J, et al. Sentiment analysis based on text information enhancement and multimodal feature fusion[J]. Pattern Recognition, 2024, 156: 110847.
[41] PENG H, GU X, LI J, et al. Text-centric multimodal contrastive learning for sentiment analysis[J]. Electronics, 2024, 13(6): 1149.
[42] GAN C Q, TANG Y, FU X, et al. Video multimodal sentiment analysis using cross-modal feature translation and dynamical propagation[J]. Knowledge-Based Systems, 2024, 299: 111982.
[43] WANG Z J, JIANG N C, CHAO X Y, et al. Multi-task disagreement-reducing multimodal sentiment fusion network[J]. Image and Vision Computing, 2024, 149: 105158.
[44] ZHU L N, ZHAO H Y, ZHU Z C, et al. Multimodal sentiment analysis with unimodal label generation and modality decomposition[J]. Information Fusion, 2025, 116: 102787.
[45] FU Y, HUANG B, WEN Y J, et al. FDR-MSA: enhancing multimodal sentiment analysis through feature disentanglement and reconstruction[J]. Knowledge-Based Systems, 2024, 297: 111965. |