
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (10): 2587-2614.DOI: 10.3778/j.issn.1673-9418.2504048
倪雪莉,王群,马卓
出版日期:2025-10-01
发布日期:2025-09-30
NI Xueli, WANG Qun, MA Zhuo
Online:2025-10-01
Published:2025-09-30
摘要: 因设计之初对安全性考虑的缺失,致使当今的DNS面临日益复杂和极具挑战性的安全问题,而区块链技术的应用,以其独有的去中心化、防篡改、可溯源、公开透明等特征,为解决当前DNS面临的安全威胁提供了一种崭新的思路。在系统分析DNS脆弱性和安全威胁的基础上,对DNS安全增强技术进行了系统梳理与剖析,强调了区块链在增强DNS系统安全性以及重构DNS安全体系中发挥的独特功能和技术优势。概述了DNS的工作机制,分析了DNS安全脆弱性的具体表现和产生根源,总结了典型DNS攻击方式与检测方法;围绕体系结构、协议和实现过程三个维度分别对传统DNS安全增强技术的研究成果进行了对比分析;将区块链在DNS安全防护中的应用界定为融入区块链的DNS安全增强技术和基于区块链的DNS安全方案两种类型,以代表性示例分别分析了各区块链安全方案的实现方法和技术路径,并进行了分析与比较;总结并提出了区块链DNS目前仍然存在的去中心化与效率、不可篡改与合规、安全与用户体验等悬而未决的问题,且对DNS安全增强未来可能的研究热点和方向进行了展望。
倪雪莉, 王群, 马卓. DNS安全增强及区块链技术的应用研究进展[J]. 计算机科学与探索, 2025, 19(10): 2587-2614.
NI Xueli, WANG Qun, MA Zhuo. Research Progress on Blockchain-Based DNS Security Enhancement Technology[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(10): 2587-2614.
| [1] MOCKAPETRIS P. Domain names - concepts and facilities: RFC1034[S/OL]. (1983-11-01) [2024-08-23]. https://www.rfc-editor.org/rfc/pdfrfc/rfc1034.txt.pdf. [2] JAIN K, JAIN M, BORADE J L. A survey on man in the middle attack[J]. International Journal for Science Technology and Engineering, 2016, 2: 277-280. [3] ALIEYAN K, KADHUM M M, ANBAR M, et al. An overview of DDoS attacks based on DNS[C]//Proceedings of the 2016 International Conference on Information and Communication Technology Convergence. Piscataway: IEEE, 2016: 276-280. [4] KIM T H, REEVES D. A survey of domain name system vulnerabilities and attacks[J]. Journal of Surveillance, Security and Safety, 2020, 1(1): 34-60. [5] HERZBERG A, SHULMAN H. DNSSEC: security and availability challenges[C]//Proceedings of the 2013 IEEE Conference on Communications and Network Security. Piscataway: IEEE, 2013: 365-366. [6] VAN RIJSWIJK-DEIJ R, SPEROTTO A, PRAS A. DNSSEC and its potential for DDoS attacks: a comprehensive measurement study[C]//Proceedings of the 2014 Conference on Internet Measurement Conference. New York: ACM, 2014: 449-460. [7] AFEK Y, BREMLER-BARR A, SHAFIR L. NXNSAttack: recursive DNS inefficiencies and vulnerabilities[EB/OL]. [2024-08-26]. https://arxiv.org/abs/2005.09107. [8] NADLER A, BITTON R, BRODT O, et al. On the vulnerability of anti-malware solutions to DNS attacks[J]. Computers & Security, 2022, 116: 102687. [9] CHIJIOKE AHAKONYE L A, IFEANYI NWAKANMA C, AJAKWE S O, et al. Countering DNS vulnerability to attacks using ensemble learning[C]//Proceedings of the 2022 International Conference on Artificial Intelligence in Information and Communication. Piscataway: IEEE, 2022: 7-10. [10] ASLAN ?, AKTU? S S, OZKAN-OKAY M, et al. A comprehensive review of cyber security vulnerabilities, threats, attacks, and solutions[J]. Electronics, 2023, 12(6): 1333. [11] BENOMAR Z, LONGO F, MERLINO G, et al. A cloud-based and dynamic DNS approach to enable the web of things [J]. IEEE Transactions on Network Science and Engineering, 2022, 9(6): 3968-3978. [12] SALAT L, DAVIS M, KHAN N. DNS tunnelling, exfiltration and detection over cloud environments[J]. Sensors, 2023, 23(5): 2760. [13] SCHMID G. Thirty years of DNS insecurity: current issues and perspectives[J]. IEEE Communications Surveys & Tutorials, 2021, 23(4): 2429-2459. [14] LYU M Z, GHARAKHEILI H H, SIVARAMAN V. A survey on DNS encryption: current development, malware misuse, and inference techniques[J]. ACM Computing Surveys, 2023, 55(8): 1-28. [15] AL-MASHHADI S, MANICKAM S. A brief review of blockchain-based DNS systems[J]. International Journal of Internet Technology and Secured Transactions, 2020, 10(4): 420. [16] 王文通, 胡宁, 刘波, 等. DNS安全防护技术研究综述[J]. 软件学报, 2020, 31(7): 2205-2220. WANG W T, HU N, LIU B, et al. Survey on technology of security enhancement for DNS[J]. Journal of Software, 2020, 31(7): 2205-2220. [17] 张宾, 张宇, 张伟哲. 递归侧DNS安全研究与分析[J]. 软件学报, 2024, 35(10): 4876-4911. ZHANG B, ZHANG Y, ZHANG W Z. Study and analysis of recursive side DNS security[J]. Journal of Software, 2024, 35(10): 4876-4911. [18] 夏玲玲, 王群, 马卓, 等. 区块链在PKI安全中的应用研究[J]. 计算机科学与探索, 2024, 18(10): 2573-2593. XIA L L, WANG Q, MA Z, et al. Research on application of blockchain in PKI security[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(10): 2573-2593. [19] ZOU F T, ZHANG S Y, PEI B, et al. Survey on domain name system security[C]//Proceedings of the 2016 IEEE 1st International Conference on Data Science in Cyberspace. Piscataway: IEEE, 2016: 602-607. [20] ALHARBI F, ZHOU Y C, QIAN F, et al. DNS poisoning of operating system caches: attacks and mitigations[J]. IEEE Transactions on Dependable and Secure Computing, 2022, 19(4): 2851-2863. [21] VON ARX K G, HAGAN G R. Sovereign domains: a declaration of independence of ccTLDs from foreign control[J]. Richmond Journal of Law and Technology, 2002, 9: 4. [22] IANA. Root servers[EB/OL]. [2024-08-18]. https://www.iana.org/domains/root/servers. [23] SCHOMP K, CALLAHAN T, RABINOVICH M, et al. Assessing DNS vulnerability to record injection[C]//Proceedings of the 2014 International Conference on Passive and Active Network Measurement. Cham: Springer, 2014: 214-223. [24] DECCIO C, DAVIS J. DNS privacy in practice and preparation[C]//Proceedings of the 15th International Conference on Emerging Networking Experiments and Technologies. New York: ACM, 2019: 138-143. [25] IMANA B, KOROLOVA A, HEIDEMANN J. Institutional privacy risks in sharing DNS data[C]//Proceedings of the 2021 Applied Networking Research Workshop. New York: ACM, 2021: 69-75. [26] WICINSKI T. DNS privacy considerations: RFC9076[S/OL]. (2021-07-01)[2024-08-17]. https://www.rfc-editor.org/rfc/rfc9076.pdf. [27] Internet Systems Consortium. Domain server software distribution[EB/OL]. (2019-01-01) [2024-08-26]. https://ftp.isc.org/www/survey/reports/2019/01/fpdns.txt. [28] AHMAD R, ALSMADI I, ALHAMDANI W, et al. Zero-day attack detection: a systematic literature review[J]. Artificial Intelligence Review, 2023, 56(10): 10733-10811. [29] 互联网域名系统国家工程研究中心(ZDNS). 网络安全宣传周: 2024年10大DNS安全事件, 影响范围波及全球[EB/OL]. (2024-09-10) [2024-09-15]. https://www.zdns.cn/h-nd-532.html. Internet Domain Name System National Engineering Research Center(ZDNS). China cybersecurity week: the top 10 DNS security incidents in 2024 have a global impact[EB/OL]. (2024-09-10) [2024-09-15]. https://www.zdns.cn/h-nd-532.html. [30] CHEN L G, ZHANG Y D, ZHAO Q, et al. Detection of DNS DDoS attacks with random forest algorithm on spark[J]. Procedia Computer Science, 2018, 134: 310-315. [31] TREJO L A, FERMAN V, MEDINA-PéREZ M A, et al. DNS-ADVP: a machine learning anomaly detection and visual platform to protect top-level domain name servers against DDoS attacks[J]. IEEE Access, 2019, 7: 116358-116369. [32] MAKSUTOV A A, CHEREPANOV I A, ALEKSEEV M S. Detection and prevention of DNS spoofing attacks[C]//Proceedings of the 2017 Siberian Symposium on Data Science and Engineering. Piscataway: IEEE, 2017: 84-87. [33] CHENG Y N, LIU Y L, LI C, et al. In-depth evaluation of the impact of national-level DNS filtering on DNS resolvers over space and time[J]. Electronics, 2022, 11(8): 1276. [34] JACKSON C, BARTH A, BORTZ A, et al. Protecting browsers from DNS rebinding attacks[J]. ACM Transactions on the Web, 2009, 3(1): 1-26. [35] HOUSER R, HAO S, LI Z, et al. A comprehensive measurement-based investigation of DNS hijacking[C]//Proceedings of the 2021 40th International Symposium on Reliable Distributed Systems. Piscataway: IEEE, 2021: 210-221. [36] JERABEK K, HYNEK K, RYSAVY O, et al. DNS over HTTPS detection using standard flow telemetry[J]. IEEE Access, 2023, 11: 50000-50012. [37] MAN K Y, QIAN Z Y, WANG Z J, et al. DNS cache poisoning attack reloaded: revolutions with side channels[C]//Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2020: 1337-1350. [38] SOLIMAN A K, SALAMA C, MOHAMED H K. Detecting DNS reflection amplification DDoS attack originating from the cloud[C]//Proceedings of the 2018 13th International Conference on Computer Engineering and Systems. Piscataway: IEEE, 2018: 145-150. [39] XU K, BUTLER P, SAHA S, et al. DNS for massive-scale command and control[J]. IEEE Transactions on Dependable and Secure Computing, 2013, 10(3): 143-153. [40] AL MESSABI K, ALDWAIRI M, AL YOUSIF A, et al. Malware detection using DNS records and domain name features[C]//Proceedings of the 2nd International Conference on Future Networks and Distributed Systems. New York: ACM, 2018: 1-7. [41] RAVI V, ALAZAB M, SRINIVASAN S, et al. Adversarial defense: DGA-based botnets and DNS homographs detection through integrated deep learning[J]. IEEE Transactions on Engineering Management, 2023, 70(1): 249-266. [42] WANG Y, ZHOU A M, LIAO S, et al. A comprehensive survey on DNS tunnel detection[J]. Computer Networks, 2021, 197: 108322. [43] MOURA G C M, CASTRO S, HEIDEMANN J, et al. TsuNAME: exploiting misconfiguration and vulnerability to DDoS DNS[C]//Proceedings of the 21st ACM Internet Measurement Conference. New York: ACM, 2021: 398-418. [44] JEITNER P, SHULMAN H, WAIDNER M. The impact of DNS insecurity on time[C]//Proceedings of the 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks. Piscataway: IEEE, 2020: 266-277. [45] 喻波, 苏金树, 杨强, 等. 网络协议软件漏洞挖掘技术综述[J]. 软件学报, 2024, 35(2): 872-898. YU B, SU J S, YANG Q, et al. Survey on vulnerability mining techniques of network protocol software[J]. Journal of Software, 2024, 35(2): 872-898. [46] Squish. DNS traversal checker[EB/OL]. [2024-09-20]. http://dns.squish.net/. [47] KAKARLA S K R, BECKETT R, ARZANI B, et al. Groot: proactive verification of DNS configurations[C]//Proceedings of the Annual Conference of the ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. New York: ACM, 2020: 310-328. [48] ZHANG H K, YE J Y, HU W H, et al. Study on the latent state of Kaminsky-style DNS cache poisoning: modeling and empirical analysis[J]. Computers & Security, 2021, 110: 102445. [49] AKKERHUIS J, CHAPIN L, FALTSTROM P, et al. Report on the impact on the DNS root system of increasing the size and volatility of the root zone[EB/OL]. (2009-09-20) [2024-09-20]. https://www.icann.org/en/system/files/files/root- scaling-study-report-31aug09-en.pdf. [50] GIJSEN B, JAMAKOVIC A, ROIJERS F. Root scaling study: description of the DNS root scaling model[EB/OL]. (2009-09-29) [2024-09-20]. https://www.icann.org/en/system/ files/files/root-scaling-model-description-29sep09-en.pdf. [51] ARENDS R, AUSTEIN R, LARSON M, et al. Protocol modifications for the DNS security extensions: RFC4035[S]. 2005. [52] DICKINSON J, DICKINSON S, BELLIS R, et al. DNS transport over TCP-implementation requirements: IETF RFC5966[S]. 2016. [53] DAMAS J, GRAFF M, VIXIE P. Extension mechanisms for DNS (EDNS(0)): IETF RFC6891[S]. 2013. [54] FOX G. Peer-to-peer networks[J]. Computing in Science & Engineering, 2001, 3(3): 75-77. [55] COX R, MUTHITACHAROEN A, MORRIS R T. Serving DNS using a peer-to-peer lookup service[C]//Proceedings of the 1st International Workshop on Peer-to-Peer Systems. Berlin, Heidelberg: Springer, 2002: 155-165. [56] QIAN T, MUELLER F, XIN Y F. A real-time distributed hash table[C]//Proceedings of the 2014 IEEE 20th International Conference on Embedded and Real-Time Computing Systems and Applications. Piscataway: IEEE, 2014: 1-10. [57] GitHub. dhash[EB/OL]. [2024-10-10]. https://gitcode.com /gh_ mirrors/dh/dhash/overview. [58] STOICA I, MORRIS R, LIBEN-NOWELL D, et al. Chord: a scalable peer-to-peer lookup protocol for Internet applications[J]. IEEE/ACM Transactions on Networking, 2003, 11(1): 17-32. [59] DANIELIS P, ALTMANN V, SKODZIK J, et al. P-DONAS[J]. ACM Transactions on Internet Technology, 2015, 15(3): 1-21. [60] MAYMOUNKOV P, MAZIèRES D. Kademlia: a peer-to-peer information system based on the XOR metric[C]//Proceedings of the 1st International Workshop on Peer-to-Peer Systems. Berlin, Heidelberg: Springer, 2002: 53-65. [61] RAMASUBRAMANIAN V, SIRER E G. The design and implementation of a next generation name service for the Internet[J]. ACM SIGCOMM Computer Communication Review, 2004, 34(4): 331-342. [62] RAMASUBRAMANIAN V, SIRER E G. Beehive: exploiting power law query distributions for O(1) lookup performance in peer to peer overlays[C]//Proceedings of the 1st Conference on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2004: 1-14. [63] SANCHO R, PEREIRA R L. Hybrid peer-to-peer DNS[C]//Proceedings of the 2014 International Conference on Computing, Networking and Communications. Piscataway: IEEE, 2014: 977-981. [64] HOFFMAN P E. DNS security extensions (DNSSEC): RFC9364[S/OL]. (2023-02-01) [2025-02-03]. https://www.hjp.at/doc/rfc/rfc9364.html. [65] ATENIESE G, MANGARD S. A new approach to DNS security (DNSSEC)[C]//Proceedings of the 8th ACM Conference on Computer and Communications Security. New York: ACM, 2001: 86-95. [66] ARENDS R, AUSTEIN R, LARSON M, et al. DNS security introduction and requirements: RFC4033[S/OL]. (2005-03-01) [2025-02-05]. https://datatracker.ietf.org/doc/rfc4033/. [67] SURY O, EDMONDS R. Edwards-curve digital security algorithm (EdDSA) for DNSSEC: RFC8080[S/OL]. (2017-02-01) [2025-02-06]. https://www.rfc-editor.org/info/rfc8080. [68] FUJIWARA K, KATO A, KUMARI W. Aggressive use of DNSSEC-validated cache: RFC8198[S/OL]. (2017-07-01)[2025-02-06]. https://www.rfc-editor.org/info/rfc8198. [69] HOFFMAN P. Revised IANA considerations for DNSSEC: RFC9157[S/OL]. (2021-12-01) [2025-02-06]. https://www. rfc-editor.org/info/rfc9157. [70] DEMPSKY M. DNSCurve: link-level security for the domain name system draft-dempsky-dnscurve-01[EB/OL]. (2010- 02-27) [2025-02-06]. https://datatracker.ietf.org/doc/html/draft- dempsky-dnscurve. [71] DNSCurve: usable security for DNS[EB/OL]. [2025-02-07]. https://www.dnscurve.org/index.html. [72] DENIS F. The DNSCrypt protocol draft-denis-dprive-dnscrypt-05[EB/OL]. (2025-01-30) [2025-02-07]. https://datatracker. ietf.org/doc/draft-denis-dprive-dnscrypt/. [73] PARK S, PAI V S, PETERSON L L, et al. CoDNS: improving DNS performance and reliability via cooperative lookups[C]//Proceedings of the 6th Symposium on Operating Systems Design and Implementation. Berkeley: USENIX Association, 2004: 14. [74] CoDNS: making DNS lookups faster, more reliable, and more predictable[EB/OL]. [2025-02-07]. https://codeen.cs.princeton.edu/codns/. [75] POOLE L, PAI V S. Confidns: leveraging scale and history to improve DNS security[C]//Proceedings of the 3rd Conference on USENIX Workshop on Real, Large Distributed Systems, 2006: 3. [76] ZHU L, HU Z, HEIDEMANN J, et al. T-DNS: connection-oriented DNS to improve privacy and security[C]//Proceedings of the 2014 ACM SIGCOMM 2014 Conference. New York: ACM, 2014: 379-380. [77] CHHABRA R, MURLEY P, KUMAR D, et al. Measuring DNS-over-HTTPS performance around the world[C]//Proceedings of the 21st ACM Internet Measurement Conference. New York: ACM, 2021: 351-365. [78] KOSHY A M, YELLUR G, KAMMACHI H J, et al. An insight into encrypted DNS protocol: DNS over TLS[C]//Proceedings of the 2021 4th International Conference on Recent Developments in Control, Automation & Power Engineering. Piscataway: IEEE, 2021: 379-383. [79] KHURSHID A, KIYAK F, CAESAR M. Improving robustness of DNS to software vulnerabilities[C]//Proceedings of the 27th Annual Computer Security Applications Conference. New York: ACM, 2011: 177-186. [80] SCAIFE N, CARTER H, LIDSKY L, et al. OnionDNS: a seizure-resistant top-level domain[J]. International Journal of Information Security, 2018, 17: 645-660. [81] 王群, 李馥娟, 王振力, 等. 区块链原理及关键技术[J]. 计算机科学与探索, 2020, 14(10): 1621-1643. WANG Q, LI F J, WANG Z L, et al. Principle and core technology of blockchain[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(10): 1621-1643. [82] ZHANG Y, LIU W F, XIA Z D, et al. Blockchain-based DNS root zone management decentralization for Internet of things[J]. Wireless Communications and Mobile Computing, 2021(1): 6620236. [83] LIU Y, YU H S, WANG W Y, et al. A robust blockchain-based distribution master for distributing root zone data in DNS[J]. The Computer Journal, 2022, 65(11): 2880-2893. [84] HE G B, SU W, GAO S, et al. TD-Root: a trustworthy decentralized DNS root management architecture based on permissioned blockchain[J]. Future Generation Computer Systems, 2020, 102: 912-924. [85] Handshake[EB/OL]. [2025-02-18]. https://handshake.org/. [86] BENSHOOF B, ROSEN A, BOURGEOIS A G, et al. Distributed decentralized domain name service[C]//Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium Workshops. Piscataway: IEEE, 2016: 1279-1287. [87] UrDHT[EB/OL]. [2025-03-07]. https://github. com/UrDHT. [88] HU N, TENG Y, ZHAO Y, et al. IDV: Internet domain name verification based on blockchain[J]. Computer Modeling in Engineering & Sciences, 2021, 129(1): 299-322. [89] ZOLFAGHARI B, SRIVASTAVA G, ROY S, et al. Content delivery networks[J]. ACM Computing Surveys, 2021, 53(2): 1-34. [90] GOURLEY S, TEWARI H. Blockchain backed DNSSEC[C]// Proceedings of the 2018 International Conference on Business Information Systems. Cham: Springer, 2018: 173-184. [91] Sun Microsystems, Inc. Public key infrastructure overview [EB/OL]. (2001-08-01) [2025-03-10]. http://highsecu.free.fr/db/outils_de_securite/cryptographie/pki/publickey.pdf. [92] TEWARI H, HUGHES A, WEBER S, et al. X509Cloud: framework for a ubiquitous PKI[C]//Proceedings of the 2017 IEEE Military Communications Conference. Piscataway: IEEE, 2017: 225-230. [93] FU Y F, WEI J Q, LI Y, et al. TI-DNS: a trusted and incentive DNS resolution architecture based on blockchain[C]//Proceedings of the 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and Communications. Piscataway: IEEE, 2023: 265-274. [94] YU Z, XUE D, FAN J L, et al. DNSTSM: DNS cache resources trusted sharing model based on consortium blockchain[J]. IEEE Access, 2020, 8: 13640-13650. [95] GAO T F, DONG Q K. DNS-BC: fast, reliable and secure domain name system caching system based on a consortium blockchain[J]. Sensors, 2023, 23(14): 6366. [96] KCP-a fast and reliable ARQ protocol[EB/OL]. [2025-03-02]. https://github.com/skywind3000/kcp. [97] CHEN W Y, YANG X, ZHANG H K, et al. Big data architecture for scalable and trustful DNS based on sharded DAG blockchain[J]. Journal of Signal Processing Systems, 2021, 93(7): 753-768. [98] DIGITALE J C, MARTIN J N, GLYMOUR M M. Tutorial on directed acyclic graphs[J]. Journal of Clinical Epidemiology, 2022, 142: 264-267. [99] Namecoin[EB/OL]. [2025-03-02]. https://www.namecoin.org/. [100] ncdns[EB/OL]. [2025-03-06]. https://www.namecoin.org/docs/ncdns/. [101] BOER T D, BREIDER V. Invisible Internet project (I2P)[EB/OL]. (2019-02-10) [2025-03-02]. https://rp.os3.nl/2018- 2019/p63/report.pdf. [102] KALODNER H A, CARLSTEN M, ELLENBOGEN P, et al. An empirical study of namecoin and lessons for decentralized namespace design[J]. Journal of Cybersecurity, 2015, 1(1): 1-23. [103] ALI M, NELSON J, SHEA R, et al. Blockstack: a global naming and storage system secured by blockchains[C]//Proceedings of the 2016 USENIX Annual Technical Conference. Berkeley: USENIX Association, 2016: 181-194. [104] Access handshake names[EB/OL]. [2025-03-09]. https:// learn.namebase.io/starting-from-zero/how-to-access-handshake-sites. [105] ENS[EB/OL]. [2025-03-09]. https://ens.domains/. [106] TAHERDOOST H. Non-fungible tokens (NFT): a systematic review[J]. Information, 2023, 14(1): 26. [107] ENSv2: the next generation of ENS[EB/OL]. (2024-05-28)[2025-03-11]. https://ens.domains/blog/post/ensv2. [108] DIB O, TOUMI K. Decentralized identity systems: architecture, challenges, solutions and future directions[J]. Annals of Emerging Technologies in Computing, 2020, 4(5): 19-40. [109] EmerDNS[EB/OL]. [2025-03-18]. https://emercoin.com/en/ emerdns/. [110] Emercoin blockchain[EB/OL]. [2025-03-18]. https://emercoin.com/en/. [111] OpenNIC[EB/OL]. [2025-03-20]. https://github.com/OpenNIC. [112] ipfs[EB/OL]. [2025-03-20]. https://github.com/ipfs/ipfs. [113] CASINO F, LYKOUSAS N, KATOS V, et al. Unearthing malicious campaigns and actors from the blockchain DNS ecosystem[J]. Computer Communications, 2021, 179: 217-230. [114] LI Z C, GAO S, PENG Z, et al. B-DNS: a secure and efficient DNS based on the blockchain technology[J]. IEEE Transactions on Network Science and Engineering, 2021, 8(2): 1674-1686. [115] PeerName[EB/OL]. [2025-03-22]. https://peername.com/. [116] JIN L, HAO S, HUANG Y, et al. DNSonChain: delegating privacy-preserved DNS resolution to blockchain[C]//Proceedings of the 2021 IEEE 29th International Conference on Network Protocols. Piscataway: IEEE, 2021: 1-11. [117] LIU W F, ZHANG Y, LIU L, et al. A secure domain name resolution and management architecture based on blockchain[C]//Proceedings of the 2020 IEEE Symposium on Computers and Communications. Piscataway: IEEE, 2020: 1-7. [118] KOVALENKO Y. Web3 domain dispute resolution framework (v1.0)[EB/OL]. (2025-03-19) [2025-03-26]. https://ssrn.com/abstract=5185473. [119] KOCAOGULLAR Y, OSTERWEIL E, ZHANG L. Towards a decentralized Internet namespace[C]//Proceedings of the 2024 Workshop on the Decentralization of the Internet. New York: ACM, 2024: 36-41. |
| No related articles found! |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||