计算机科学与探索

• 学术研究 •    下一篇

拓扑信息引导的时空状态图搜索算法研究

刘亚杰, 秦力, 余松芹, 杨丰锐, 王军, 祁永强   

  1. 1. 中国矿业大学 数学学院, 江苏 徐州 221116 
    2. 中国矿业大学 信息与控制工程学院, 江苏 徐州 221116

Study on Topology Information-Guided Spatiotemporal State Graph Search Algorithm

LIU Yajie,  QIN Li,  YU Songqin,  YANG Fengrui,  WANG Jun,  QI Yongqiang   

  1. 1. School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
    2. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

摘要: 路径规划旨在给定的环境中,为移动对象找到一条从起点到目标点的最优或可行路径。现有的路径规划方法在地下空间中环境信息构建、可行路径搜索、障碍碰撞风险等方面存在不足,导致路径规划结果缺乏泛化性、高效性以及运动可行安全性。本文提出了一种基于拓扑信息引导的时空状态图搜索(Topology Information-Guided Spatiotemporal State Graph Search, TG-SGS)算法。首先,设计基于广义维诺图的拓扑引导路径生成机制,充分利用了环境中可行空间的连通信息,得到一条先验路径,避免了盲目搜索;其次,基于非完整运动学约束,通过生成连接两个状态的运动基元,进行增量式时空状态节点扩展,实现节点的变步长生长,并结合虚拟通道限制节点扩展及Reeds-Shepp曲线加速连接策略提升算法效率,有效改善了路径冗余搜索问题;最后,设计了一种可以评估碰撞风险的维诺势场函数,平衡了避障行为与路径优化的优先级,进一步提高了路径的安全性。实验结果表明,本文提出的算法TG-SGS在简单环境、迷宫环境、实际室内环境中均优于主流路径规划方法,有效提升了路径规划效率和质量。

关键词: 拓扑路径, 混合A*算法, 维诺势场, 路径规划

Abstract: Path planning is aimed at finding an optimal or feasible path for a mobile object from a start point to a goal in a given environment. However, existing methods are limited in environmental modeling, feasible path search, and obstacle collision risk assessment in underground spaces, resulting in insufficient generalization, efficiency, and motion feasibility. A Topology Information-Guided Spatiotemporal State Graph Search (TG-SGS) algorithm is proposed in this paper. First, a topology-guided path generation mechanism based on the Generalized Voronoi Diagram (GVD) is introduced, where environmental connectivity is utilized to derive a prior path and blind search is avoided. Then, by considering nonholonomic kinematic constraints, incremental spatiotemporal state expansion is performed using motion primitives, enabling variable-step node growth. A virtual channel constraint and a Reeds-Shepp curve acceleration strategy are incorporated to reduce redundant searches and improve efficiency. Furthermore, a Voronoi potential field function is designed to assess collision risks, where obstacle avoidance and path optimization are balanced for enhanced safety. Experimental results demonstrate that the proposed TG-SGS algorithm outperforms existing methods in simple, maze-like, and real-world indoor environments, with higher efficiency and path quality being achieved.

Key words: topological path, hybrid A* algorithm, Voronoi potential field, path planning