计算机科学与探索 ›› 2014, Vol. 8 ›› Issue (10): 1239-1245.DOI: 10.3778/j.issn.1673-9418.1406014
刘晓勇+
LIU Xiaoyong+
摘要: 引力搜索算法(gravitational search algorithm,GSA)是模拟万有引力定律进行搜索的一种新颖的优化算法,已有研究表明GSA算法相比一些传统的优化算法拥有较好的收敛性能,但其缺乏有效的全局寻优机制,易于被局部极值吸引,从而陷入早熟收敛。因此提出了一种基于Lévy Flight和权值惯性递减的引力搜索算法QmuGSA,以加强算法的全局寻优能力。该算法通过Lévy Flight独特的不均匀随机游走的机制扩大粒子的搜索范围,增加种群多样性,从而更容易跳出局部最优点。通过4个标准测试函数对所提算法进行了仿真测试,结果表明所提算法能够有效克服基本引力搜索算法易早熟、收敛精度低等缺陷,具有较好的寻优精度和全局收敛性能,能够解决一些复杂函数的优化问题。