计算机科学与探索 ›› 2016, Vol. 10 ›› Issue (6): 847-855.DOI: 10.3778/j.issn.1673-9418.1507031
陈思汉1,余建波2+
CHEN Sihan1, YU Jianbo2+
摘要: 针对二维局部均值分解(bidimensional local mean decomposition,BLMD)中影响算法速度的两个主要因素:自适应搜索窗口和迭代终止条件,提出了优化方法,并在其基础上提出了一种边缘检测算法。该算法采用Delaunay三角剖分得到局部极值点的理想规则化的三角网格,通过网格划分确定相邻极值点及滑动平均窗口的大小,并提出了一种新的BLMD算法迭代收敛条件,通过对人工合成图像以及自然图像的实验,证实了该优化算法与原算法结果非常接近甚至更优,且大幅度提高了计算速度。对BLMD得到的最高频分量进行直方图均衡,将其结果二值化,通过设定阈值剔除其中不连续的细小边缘,通过形态学将其骨骼化,得到最终提取的边缘。与几种典型边缘检测算子的比较实验表明,新算法可以较好地检测出图像边缘,相对于其他边缘检测算子,对于图像中的纹理等细节边缘有着更佳的检测效果;并且得益于BLMD图像多尺度分析的优势,较好地避免了因光照明暗等低频因素产生的假边缘,提取出的边缘更符合视觉上的主观检测。