计算机科学与探索 ›› 2017, Vol. 11 ›› Issue (9): 1505-1512.DOI: 10.3778/j.issn.1673-9418.1607031
魏明俊,许道云+,秦永彬
WEI Mingjun, XU Daoyun+, QIN Yongbin
摘要: 在人脸识别问题中,当每类训练样本有且仅有一个时,由于类内缺乏足够的特征变化信息来预测人脸复杂的特征变化,从而导致常用分类算法的识别准确率急剧下降。目前最好的解决方法大致可分为两类:一是生成虚拟的训练样本以扩大训练集;二是学习稀疏变化字典以表示复杂特征变化。针对此问题,在引入稀疏变化字典来表示人脸复杂特征变化的基础上,提出一种基于K邻域分块自动加权的单样本识别算法。通过对测试样本进行分块,然后对每一个子分块求K邻域分块,以组成虚拟的同类别测试样本集;同时提出了一种自动加权策略,对这些分块在分类中的比重进行加权,最后通过一种改进的投票机制确定分类结果。通过与已有的单样本识别算法进行比较,并在公共人脸数据库AR、CMU Multi-PIE和ORL上进行实验,结果表明该方法有助于提高单样本识别问题的分类准确率。