计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (1): 18-29.DOI: 10.3778/j.issn.1673-9418.1908024
王绍卿,李鑫鑫,孙福振,方春
WANG Shaoqing, LI Xinxin, SUN Fuzhen, FANG Chun
摘要: 新闻每时每刻都在发生,阅读新闻已经成为很多人的习惯。新闻媒体众多,网络媒体凭其迅捷性和便利性成为很多人的首选。网络新闻众多导致新闻过载,这就迫切需要个性化的新闻推荐系统,帮助用户快速地找到感兴趣的新闻。伴随着新闻大数据的产生和移动互联网的蓬勃发展,个性化新闻推荐迎来了新的机遇和挑战。首先介绍了个性化新闻推荐的挑战性;然后提出了个性化新闻推荐系统的基本框架,该框架包含新闻建模、用户建模、推荐引擎和用户接口四个模块,并以该框架为基础,分别综述了每个模块的研究进展,列举了现有的个性化新闻推荐系统中四个模块所采用的技术;最后总结了常用数据集、实验方法、评测指标和未来的研究方向。