计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (5): 803-814.DOI: 10.3778/j.issn.1673-9418.1905090
李广丽,滑瑾,袁天,朱涛,邬任重,姬东鸿,张红斌
LI Guangli, HUA Jin, YUAN Tian, ZHU Tao, WU Renzhong, JI Donghong, ZHANG Hongbin
摘要:
用户偏好挖掘是推荐系统研究中的关键问题,它对于改善推荐质量具有非常重要的作用。提出用户偏好挖掘生成对抗网络(UPM-GAN),从两个角度深入分析用户隐含偏好:基于三元组损失算法对用户评分矩阵进行处理,挖掘难分负样本,以更好地确立正样本,为准确刻画用户偏好奠定基础;基于奇异值分解(SVD++)算法构建UPM-GAN的生成模型,利用SVD++算法中的偏置信息及隐式参数描述用户隐含偏好, 以提高评分预测精度。最后使用最新生成对抗网络(GAN)框架完成推荐系统训练,在MovieLens-100K、MovieLens-1M这两个主流数据集上展开实验仿真。实验表明UPM-GAN的Precision@K、均值平均精度(MAP)等多项指标均优于对比基线,且它还具有收敛速度快、训练过程平稳等优点。基于UPM-GAN的推荐系统具有一定实用价值。