[1] Zhou Z H, Feng J. Deep forest: towards an alternative to deep neural networks[C]//Proceedings of the 26th Interna-tional Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 3553-3559.
[2] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436.
[3] Schmidhuber J. Deep learning in neural networks: an over-view[J]. Neural Networks, 2015, 61: 85-117.
[4] Simon D. Biogeography-based optimization[J]. IEEE Transac-tions on Evolutionary Computation, 2008, 12(6): 702-713.
[5] Cuevas E, Cienfuegos M, Zaldívar D, et al. A swarm opti-mization algorithm inspired in the behavior of the social-spider[J]. Expert Systems with Applications, 2013, 40(16): 6374-6384.
[6] Alizadeh E, Meskin N, Khorasani K. A dendritic cell immune system inspired scheme for sensor fault detection and isola-tion of wind turbines[J]. IEEE Transactions on Industrial In-formatics, 2018, 14(2): 545-555.
[7] Feng X, Wang Y B, Yu H Q, et al. A novel intelligence algo-rithm based on the social group optimization behaviors[J]. IEEE Transactions on Systems, Man, and Cybernetics: Sys-tems, 2018, 48(1): 65-76.
[8] Eckardt W. Cooperation and competition in two forest mon-keys[J]. Behavioral Ecology, 2017, 15(3): 400-411.
[9] Fehr E, Schmidt K M. A theory of fairness, competition and cooperation[J]. The Quarterly Journal of Economics, 1999, 114(3): 817-868.
[10] Atashpaz-Gargari E, Lucas C. Imperialist competitive algo-rithm: an algorithm for optimization inspired by imperialistic competition[C]//Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, Sep 25-28, 2007. Pis-cataway: IEEE, 2007: 4661-466.
[11] West S A, Griffin A S, Gardner A. Evolutionary explanations for cooperation[J]. Current Biology, 2007, 17(16): R661-R672.
[12] Heg D, Van Treuren R. Female-female cooperation in polyg-ynous oystercatchers[J]. Nature, 2017, 391: 687-691.
[13] Shi B B, Chen Y N, Zhang P, et al. Nonlinear feature trans-formation and deep fusion for Alzheimer??s disease staging analysis[J]. Pattern Recognition, 2017, 63: 487-498.
[14] Desai A, Lee D J. Visual odometry drift reduction using SYBA descriptor and feature transformation[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(7): 1839-1851.
[15] Zhu X H, Ni Z W, Cheng M Y. Self-adaptive improved artificial fish swarm algorithm with changing step[J]. Com-puter Science, 2015, 42(2): 210-216. 朱旭辉, 倪志伟, 程美英. 变步长自适应的改进人工鱼群算法[J]. 计算机科学, 2015, 42(2): 210-216.
[16] Wang L, Zhong X, Liu M. A novel group search optimizer for multi-objective optimization[J]. Expert Systems with App-lications, 2012, 39(3): 2939-2946.
[17] Li Y Z, Zheng X W, Xiao X C. A study on cooperative multi-objective group search optimizer[C]//Proceedings of the 27th Chinese Control and Decision Conference. Piscataway: IEEE, 2015: 3776-3781.
[18] He S, Wu Q H, Saunders J R. Group search optimizer: an optimization algorithm inspired by animal searching beha-vior[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990.
[19] Peng H, Chen H Y. A new variable step size LMS algorithm and its analysis[J]. Journal of Zhejiang University of Tech-nology, 2018, 46(1): 45-50. 彭宏, 陈泓宇. 一种新的变步长LMS算法及分析[J]. 浙江工业大学学报, 2018, 46(1): 45-50.
[20] Derrac J, García S, Molina D, et al. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms[J]. Swarm & Evolutionary Computation, 2011, 1(1): 3-18.
[21] García S, Fernández A, Luengo J, et al. A study of statistical techniques and performance measures for genetics-based mac-hine learning: accuracy and interpretability[J]. Soft Computing, 2009, 13(10): 959-977. |