[1] Hasib A A. Threats of online social networks[J]. International Journal of Computer Science and Network Security, 2009, 9(11): 88-293.
[2] Hydara I, Sultan A B M, Zulzalil H, et al. Current state of research on cross-site scripting (XSS)-A systematic literature review[J]. Information and Software Technology, 2015, 58: 170-186.
[3] Duchene F, Rawat S, Richier J L, et al. KameleonFuzz: evolutionary fuzzing for black-box XSS detection[C]//Proceedings of the 4th ACM Conference on Data and Application Security and Privacy, San Antonio, Mar 3-5, 2014. New York: ACM, 2014: 37-48.
[4] Sarmah U, Bhattacharyya D K, Kalita J K. A survey of detection methods for XSS attacks[J]. Journal of Network and Computer Applications, 2018, 118: 113-143.
[5] Hadpawat T, Vaya D. Analysis of prevention of XSS attacks at client side[J]. International Journal of Computer Applications, 2017, 173(10): 1-4.
[6] Duchene F, Groz R, Rawat S, et al. XSS vulnerability detection using model inference assisted evolutionary fuzzing[C]//Proceedings of 5th IEEE International Conference on Software Testing, Verification and Validation, Montreal, Apr 17-21, 2012. Washington: IEEE Computer Society, 2012: 815-817.
[7] Duchene F, Rawat S, Richier J L, et al. LigRE: reverse- engineering of control and data flow models for black-box XSS detection[C]//Proceedings of the 2013 Working Conference on Reverse Engineering, Koblenz, Oct 14-17, 2013. Piscataway: IEEE, 2013: 252-261.
[8] Khan N, Abdullah J, Khan A S. Defending malicious script attacks using machine learning classifiers[J]. Wireless Communications and Mobile Computing, 2017, 8(6): 5326-5332.
[9] Wang R, Jia X Q, Li Q L, et al. Machine learning based cross-site scripting detection in online social network[C]//Proceedings of the 2014 IEEE International Conference on High Performance Computing and Communications, 6th IEEE International Symposium on Cyberspace Safety and Security, 11th IEEE International Conference on Embedded Software and Systems, Paris, Aug 20-22, 2014. Piscataway: IEEE, 2014: 823-826.
[10] Rathore S, Sharma P K, Park J H. XSSClassifier: an efficient XSS attack detection approach based on machine learning classifier on SNSs[J]. Journal of Information Processing Systems, 2017, 13(4): 1014-1028.
[11] Li Q L, Wang R, Jia X Q. Cross-site scripting detection in online social network based on classifiers and improved n-gram model[J]. Journal of Computer Applications, 2014, 34(6): 1661-1665. 李沁蕾, 王蕊, 贾晓启. OSN中基于分类器和改进n-gram模型的跨站脚本检测方法[J]. 计算机应用, 2014, 34(6): 1661-1665.
[12] Vishnu B A, Jevitha K P. Prediction of cross-site scripting attack using machine learning algorithms[C]//Proceedings of the 2014 International Conference on Interdisciplinary Advances in Applied Computing, Amritapuri, Oct 10-11, 2014. New York: ACM, 2014: 1-5.
[13] Gupta M K, Govil M C, Singh G. Text-mining based predictive model to detect XSS vulnerable files in Web applications[C]//Proceedings of the 2015 Annual IEEE India Conference, New Delhi, Dec 17-20, 2015. Piscataway: IEEE, 2015: 1-6.
[14] Guo X B, Jin S Y, Zhang Y X. XSS vulnerability detection using optimized attack vector repertory[C]//Proceedings of the 2015 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Xi??an, Sep 17-19, 2015. Washington: IEEE Computer Society, 2015: 29-36.
[15] Li Z, Zou D Q, Xu S H, et al. VulDeePecker: a deep learning-based system for vulnerability detection[C]//Proceedings of the 25th Annual Network and Distributed System Security Symposium, San Diego, Feb 18-21, 2018. The Internet Society, 2018: 1-15.
[16] Wu F, Wang J G, Liu J Q, et al. Vulnerability detection with deep learning[C]//Proceedings of the 3rd IEEE International Conference on Computer and Communications, Chengdu, Dec 13-16, 2017. Piscataway: IEEE, 2018: 1298-1302.
[17] Fang Y, Li Y, Liu L, et al. DeepXSS: cross site scripting detection based on deep learning[C]//Proceedings of the 2018 International Conference on Computing and Artificial Intelligence, Chengdu, Mar 12-14, 2018. New York: ACM, 2018: 47-51.
[18] Zeng Y, Yang H G, Feng Y S, et al. A convolution BiLSTM neural network model for Chinese event extraction[C]//LNCS 10102: Proceedings of the 5th CCF Conference on Natural Language Processing and Chinese Computing, and 24th International Conference on Computer Processing of Oriental Languages, Kunming, Dec 2-6, 2016. Berlin, Heidelberg: Springer, 2016: 275-287.
[19] Zhang L, Xiang F S. Relation classification via BiLSTM-CNN[C]//LNCS 10943: Proceedings of the 3rd International Conference on Data Mining and Big Data, Shanghai, Jun 17-22, 2018. Berlin, Heidelberg: Springer, 2018: 373-382. |