[1] Vapnik V N. The nature of statistical learning theory[M]. New York: Springer-Verlag, 1995.
[2] Tao J W, Wang S T. Kernel support vector machine for domain adaptation[J]. Acta Automatica Sinica, 2012, 38(5):797-811.陶剑文, 王士同. 领域适应核支持向量机[J]. 自动化学报, 2012, 38(5): 797-811.
[3] Feng C, Liao S Z. Large-scale kernel methods via random hypothesis spaces[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(5): 785-793.冯昌, 廖士中. 大规模核方法的随机假设空间方法[J]. 计算机科学与探索, 2018, 12(5): 785-793.
[4] Sch?lkopf B, Mika S, Smola A, et al. Kernel PCA pattern reconstruction via approximation preimages[C]//Proceedings of the 1998 International Conference on Artificial Neural Net-works, Sk?vde, Sep 2-4, 1998. Berlin, Heidelberg: Springer, 1998: 147-152.
[5] Lanckriet G R G, De Bie T, Cristianini N, et al. A stat-istical framework for genomic data fusion[J]. Bioinforma-tics, 2004, 20(16): 2626-2635.
[6] Rakotomamonjy A, Bach F R, Canu S, et al. More efficiency in multiple kernel learning[C]//Proceedings of the 24th Inter-national Conference on Machine Learning, Corvalis, Jun 20-24, 2007. New York: ACM: 775-782.
[7] Li X, Wang S T. Combination of original information and mapping information for multiple kernel learning for dimensionality reduction[J]. Journal of Frontiers of Com-puter Science and Technology, 2019, 13(2): 310-321.李旭, 王士同. 原信息与映射信息组合的多核学习降维方法[J]. 计算机科学与探索, 2019, 13(2): 310-321.
[8] Tao J W, Chung F L, Wang S T, et al. Sparse label propa-gation: a robust domain adaptation learning method[J]. Journal of Software, 2015, 26(5): 977-1000.陶剑文, Chung F L, 王士同, 等. 稀疏标签传播:一种鲁棒的领域适应学习方法[J]. 软件学报, 2015, 26(5): 977-1000.
[9] Serhat S, Rong J, Anil K. Multiple kernel learning for visual object recognition: a review[J]. IEEE Transactions on Pat-tern Analysis and Machine Intelligence, 2014, 36(7): 1354-1369.
[10] Lu M, Liu L H, Wu L H. Research on multi-kernel support vector data description method of classification[J]. Computer Engineering and Applications, 2016, 52(18): 68-73.卢明, 刘黎辉, 吴亮红. 多核支持向量数据描述分类方法研究[J]. 计算机工程与应用, 2016, 52(18): 68-73.
[11] Wang H Q, Sun F C, Cai Y N, et al. On multiple kernel learning methods[J]. Acta Automatica Sinica, 2010, 36(8):1037-1050.汪洪桥, 孙富春, 蔡艳宁, 等. 多核学习方法[J]. 自动化学报, 2010, 36(8): 1037-1050.
[12] Sriharsha V, George N. Style context with second-order statistics[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005, 27(1): 14.
[13] Cheema M S, Eweiwi A, Bauckhage C. Human activity recognition by separating style and content[J]. Pattern Recog-nition Letters, 2014, 50: 130-138.
[14] Zhang X Y, Huang K Z, Liu C L. Pattern field classification with style normalized transformation[C]//Proceedings of the 22nd International Joint Conference on Artificial Intelli-gence, Catalonia, Jul 16-22, 2011. Menlo Park: AAAI, 2011: 1621-1626.
[15] Jiang H C, Huang K Z, Zhang R. Field support vector regression[C]//LNCS 10634: Proceedings of the 24th Inter-national Conference on Neural Information Processing, Guang-zhou, Nov 14-18, 2017. Berlin, Heidelberg: Springer, 2017: 699-708.
[16] Huang K Z, Jiang H C, Zhang X Y. Field support vector machines[J]. IEEE Transactions on Emerging Topics in Com-putational Intelligence, 2017, 1(6): 454-463.
[17] Pattarin F, Paterlini S, Minerva T. Clustering financial time series: an application to mutual funds style analysis[J].Com-putational Statistics and Data Analysis, 2004, 47(2): 353-372.
[18] Marzinotto G, Rosales J C, El-Yacoubi M A, et al. Age and gender characterization through a two layer clustering of online handwriting[C]//LNCS 9386: Proceedings of the 16th International Conference on Advanced Concepts for Intelligent Vision Systems, Catania, Oct 26-29, 2015. Berlin, Heidelberg: Springer, 2015: 428-439.
[19] Suykens J A K. Least squares support vector machines[J]. International Journal of Circuit Theory & Applications, 2002, 27(6): 605-615.
[20] Chen X K, Guo N, Ma Y D, et al. More efficient sparse multi-kernel based least square support vector machine[J]. Communications in Computer and Information Science, 2012, 289: 70-78.
[21] Kloft M. [lp]-norm multiple kernel learning[J]. IEEE Trans-actions on Pattern Analysis & Machine Intelligence, 2007, 30(2): 348-353.
[22] Manic V, Babu B R. More generality in efficient multiple kernel learning[C]//Proceedings of the 26th Annual International Conference on Machine Learning, Quebec, Jun 14-18, 2009.New York: ACM, 2009: 1065-1072.
[23] Cortes C, Mohri M, Rostamizadeh A. Learning non-linear combinations of kernels[C]//Proceedings of the 23rd Annual Conference on Neural Information Processing Systems, Vancouver, Dec 7-10, 2009. Red Hook: Curran Associates,2009: 396-404.
[24] Mehmet G, Alpaydin E. Localized multiple kernel learning[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jun 5-9, 2008. New York: ACM, 2008: 352-359.
[25] Cristianini N, Shawe-Taylor J. An introduction to support vector machines and other kernel-based learning methods [M]. Cambridge: Cambridge University Press, 2000.
[26] Xu Z L, Jin R, Yang H Q, et al. Simple and efficient multiple kernel learning by group lasso[C]//Proceedings of the 27th International Conference on Machine Learning, Haifa, Jun 21-24, 2010. Madison: Omni Press, 2010: 1175-1182.
[27] Cortes C, Mohri M, Rostamizadeh A. Two-stage learning kernel algorithms[C]//Proceedings of the 27th International Conference on Machine Learning, Haifa, Jun 21-24, 2010. Madison: Omni Press, 2010: 239-246.
[28] Rakotomamonjy A, Bach F R, Canu S, et al. Simple MKL[J]. The Journal of Machine Learning Research, 2008, 9(11): 2491-2521.
[29] Aiolli F, Donini M. EasyMKL: a scalable multiple kernel learning algorithm[J]. Neurocomputing, 2015, 169: 215-224.
[30] Wall M E, Rechtsteiner A, Rocha L M. Singular value decomposition and principal component analysis[J]. arXiv:physics/0208101, 2003.
[31] Jiang Y, Deng Z H, Chung F L, et al. Recognition of epileptic EEG signals using a novel multiview TSK fuzzy system[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(1): 3-20. |