[1] ZHANG C P, SU G D. Human face recognition: a survey[J]. Journal of Image and Graphics, 2000, 5(11): 885-894.
张翠平, 苏光大. 人脸识别技术综述[J]. 中国图象图形学报, 2000, 5(11): 885-894.
[2] PENG X J, QIAO Y. Advances and challenges in facial expression analysis[J]. Journal of Image and Graphics, 2020, 25(11): 2337-2348.
彭小江, 乔宇. 面部表情分析进展和挑战[J]. 中国图象图形学报, 2020, 25(11): 2337-2348.
[3] SHU Y, MAO L B, CHEN S, et al. Self-supervised learning and generative adversarial network-based facial attribute recognition with small sample size training[J]. Journal of Image and Graphics, 2020, 25(11): 2391-2403.
疏颖, 毛龙彪, 陈思, 等. 结合自监督学习和生成对抗网络的小样本人脸属性识别[J]. 中国图象图形学报, 2020, 25(11): 2391-2403.
[4] DUAN Y K. Deep learning based face recognition technology in security field[J]. Security in China, 2017(11): 72-74.
段应奎. 基于深度学习的人脸识别技术在安防领域的应用[J]. 中国安防, 2017(11): 72-74.
[5] DONG Y H, ZHANG S M, ZHAO J L. Review of occlusion face recognition method[J]. Computer Engineering and Applications, 2020, 56(9): 1-12.
董艳花, 张树美, 赵俊莉. 有遮挡人脸识别方法综述[J]. 计算机工程与应用, 2020, 56(9): 1-12.
[6] LIU L. Face image restoration research based on context encoders and CGAN joint optimization[D]. Xiangtan: Xiangtan University, 2018.
刘恋. 基于语义编码器和CGAN联合优化的人脸缺损图像修复研究[D]. 湘潭: 湘潭大学, 2018.
[7] EIHARROUSS O, AIMAADEED N, AL-MáADEED S, et al. Image inpainting: a review[J]. Neural Processing Letters, 2020, 51(2): 2007-2028.
[8] BARNES C, SHECHTMAN E, FINKELSTEIN A, et al. PatchMatch: a randomized correspondence algorithm for structural image editing[J]. ACM Transactions on Graphics, 2009, 28(3): 24.
[9] BALLESTER C, BERTALMíO M, CASELLES V, et al. Filling-in by joint interpolation of vector fields and gray levels[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1200-1211.
[10] BERTALMíO M, SAPIRO G, CASELLES V, et al. Image inpainting[C]//Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, Jul 23-28, 2000. New York: ACM, 2000: 417-424.
[11] PATHAK D, KR?HENBüHL P, DONAHUE J, et al. Context encoders: feature learning by inpainting[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2536-2544.
[12] GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2014, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680.
[13] IIZUKA S, SIMO-SERRA E, ISHIKAWA H. Globally and locally consistent image completion[J]. ACM Transactions on Graphics, 2017, 36(4): 1-14.
[14] YU J H, LIN Z, YANG J M, et al. Generative image inpainting with contextual attention[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 5505-5514.
[15] WANG P, YE X Y, WANG T, et al. Face recognition based on double variation and double space local directional pattern[J]. Computer Engineering and Applications, 2021, 57(4): 91-99.
王鹏, 叶学义, 王涛, 等. 双偏差双空间局部方向模式的人脸识别[J]. 计算机工程与应用, 2021, 57(4): 91-99.
[16] LIU Y, SHE J C, GONG Y C, et al. Survey of facial completion techniques based on deep learning[J]. Application Research of Computers, 2021, 38(1): 9-14.
刘颖, 佘建初, 公衍超, 等. 基于深度学习的面部修复技术综述[J]. 计算机应用研究, 2021, 38(1): 9-14.
[17] WANG F P, LI W L, LIU Y, et al. Face inpainting algorithm combining edge information with gated convolution[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 150-162.
王富平, 李文楼, 刘颖, 等. 结合边缘信息和门卷积的人脸修复算法[J]. 计算机科学与探索, 2021, 15(1): 150-162.
[18] CHEN J Z, WANG J, GONG X. Face image inpainting using cascaded generative adversarial networks[J]. Journal of University of Electronic Science and Technology of China, 2019, 48(6): 910-917.
陈俊周, 王娟, 龚勋. 基于级联生成对抗网络的人脸图像修复[J]. 电子科技大学学报, 2019, 48(6): 910-917.
[19] YANG W X, WANG M, ZHANG L. Semantic face image inpainting based on U-Net with dense blocks[J]. Journal of Computer Applications, 2020, 40(12): 3651-3657.
杨文霞, 王萌, 张亮. 基于密集连接块U-Net的语义人脸图像修复[J]. 计算机应用, 2020, 40(12): 3651-3657.
[20] XIE Z R, CUN Y P, JIANG D H, et al. Research on face image restoration based on least squares generative adversarial network[J]. Science & Technology Vision, 2020(22): 1-6.
谢卓然, 寸怡鹏, 姜德航, 等. 基于最小二乘生成对抗网络的人脸图像修复研究[J]. 科技视界, 2020(22): 1-6.
[21] ZHENG C X, CHAM T J, CAI J F. Pluralistic image completion[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1438-1447.
[22] WANG Y, TAO X, QI X J, et al. Image inpainting via generative multi-column convolutional neural networks[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2018, Montreal, Dec 3-8, 2018. Red Hook: Curran Associates, 2018: 329-338.
[23] SONG Y H, YANG C, SHEN Y J, et al. SPG-Net: segmentation prediction and guidance network for image inpainting[C]//Proceedings of the British Machine Vision Conference 2018, Newcastle, Sep 3-6, 2018. Durham: BMVA Press, 2018: 97.
[24] CHEN Z Y, NIE S L, WU T F, et al. High resolution face completion with multiple controllable attributes via fully end-to-end progressive generative adversarial networks[J]. arXiv:1801.07632, 2018.
[25] ZENG Y H, FU J L, CHAO H Y, et al. Learning pyramid-context encoder network for high-quality image inpainting[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1486-1494.
[26] LI Y J, LIU S F, YANG J M, et al. Generative face completion[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5892- 5900.
[27] SONG L S, CAO J, SONG L X, et al. Geometry-aware face completion and editing[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park:AAAI, 2019: 2506-2513.
[28] ZHAO L, MO Q S, LIN S H, et al. UCTGAN: diverse image inpainting based on unsupervised cross-space translation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5740-5749.
[29] LAHIRI A, JAIN A K, AGRAWAL S, et al. Prior guided GAN based semantic inpainting[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 13693-13702.
[30] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-14.
[31] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 1-14.
[32] YEH R A, CHEN C, LIM T Y, et al. Semantic image inpainting with deep generative models[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6882-6890.
[33] LIU Z W, LUO P, WANG X G, et al. Deep learning face attributes in the wild[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 11-18, 2015. Washington: IEEE Computer Society, 2015: 3730-3738.
[34] GROSS R, MATTHEWS I, COHN J, et al. Multi-PIE[J]. Image and Vision Computing, 2010, 28(5): 807-813.
[35] RONNEBERGER O, FISCHER P, BROX T. U-NET: convolutional networks for biomedical image segmentation[C]//LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Berlin,Heidelberg: Springer, 2015: 234-241.
[36] YANG C, LU X, LIN Z, et al. High-resolution image inpainting using multi-scale neural patch synthesis[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4076-4084.
[37] YAN Z Y, LI X M, LI M, et al. Shift-Net: image inpainting via deep feature rearrangement[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[38] SONG Y H, YANG C, LIN Z L, et al. Contextual-based image inpainting: infer, match, and translate[C]//LNCS 11206: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-18.
[39] LIU G L, REDA F A, SHIH K J, et al. Image inpainting for irregular holes using partial convolutions[C]//LNCS 11215: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 89-105.
[40] YANG Y, GUO X J, MA J Y, et al. LaFIn: generative landmark guided face inpainting[J]. arXiv:1911.11394, 2019.
[41] YU J H, LIN Z, YANG J M, et al. Free-form image inpainting with gated convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019. Piscataway: IEEE, 2019: 4471-4480.
[42] LI J Y, WANG N, ZHANG L F, et al. Recurrent feature reasoning for image inpainting[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 16-18, 2020. Piscataway: IEEE, 2020: 7757-7765.
[43] HUI Z, LI J, WANG X M, et al. Image fine-grained inpainting[J]. arXiv:2002.02609, 2020.
[44] YUAN X W, PARK I K. Face de-occlusion using 3D morphable model and generative adversarial network[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 10061-10070.
[45] NAZERI K, NG E, JOSEPH T, et al. Edgeonnect: generative image inpainting with adversarial edge learning[J]. arXiv: 1901.00212, 2019.
[46] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 2017 International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5767-5777.
[47] JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[J]. arXiv:1807. 00734, 2018.
[48] BLANZ V, VETTER T. A morphable model for the synthesis of 3D faces[C]//Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, Aug 8-13, 1999. New York: ACM, 1999: 187-194.
[49] ZHU X Y, LEI Z, LIU X M, et al. Face alignment across large poses: a 3D solution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 146-155.
[50] SAGONG M C, SHIN Y G, KIM S W, et al. PEPSI: fast image inpainting with parallel decoding network[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 11360-11368.
[51] HUO X Z, ZHANG W D, TIAN S W, et al. Parallel decoder image inpainting method for edge-terminal collaboration[J/OL]. Computer Engineering and Applications (2021-04-19) [2021-05-19]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20210419.1320.009.html.
霍相佐, 张文东, 田生伟, 等. 面向边-端协同的并行解码器图像修复方法[J/OL]. 计算机工程与应用 (2021-04-19) [2021-05-19]. http://kns.cnki.net/kcms/detail/11.2127.TP. 20210419.1320.009.html.
[52] LUO H L, AO Y, YUAN P. Image inpainting using generative adversarial networks[J]. Acta Electronica Sinica, 2020, 48(10): 1891-1898.
罗会兰, 敖阳, 袁璞. 一种生成对抗网络用于图像修复的方法[J]. 电子学报, 2020, 48(10): 1891-1898.
[53] VORONIN V V, SIZYAKIN R A, MARCHUK V I, et al. Video inpainting of complex scenes based on local statistical model[C]//Proceedings of the Image Processing: Algorithms and Systems XIV, San Francisco, Feb 14-18, 2016: 1-6.
[54] HE K, NIU J H, SHEN C N, et al. Image inpainting algorithm with adaptive patch using SSIM[J]. Journal of Tianjin University (Science and Technology), 2018, 51(7): 763-767.
何凯, 牛俊慧, 沈成南, 等. 基于SSIM 的自适应样本块图像修复算法[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(7): 763-767.
[55] HORé A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Aug 23-26, 2010. Washington: IEEE Computer Society, 2010: 2366-2369.
[56] SALIMANS T, GOODFELLOW I J, ZAREMBA W, et al. Improved techniques for training GANs[J]. arXiv:1606. 03498, 2016.
[57] HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]//Proceedings of the 2017 International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 6626-6637.
[58] PARK E, YANG J M, YUMER E, et al. Transformation-grounded image generation network for novel 3D view synthesis[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 702-711.
[59] DOWSON D C, LANDAU B V. The Fréchet distance between multivariate normal distributions[J]. Journal of Multivariate Analysis, 1982, 12(3): 450-455.
[60] KARRAS T, AILA T, LAINE S, et al. Progressive growing of GANs for improved quality, stability, and variation[J]. arXiv:1710.10196, 2017.
[61] ZHOU B L, LAPEDRIZA à, KHOSLA A, et al. Places: a 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(6): 1452-1464.
[62] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252.
[63] DOERSCH C, SINGH S, GUPTA A, et al. What makes Paris look like Paris?[J]. ACM Transactions on Graphics, 2012, 31(4): 101.
[64] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C]//Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, Nov 9-12, 2003. Piscataway: IEEE, 2003: 1398-1402.
[65] LIU H Y, JIANG B, XIAO Y, et al. Coherent semantic attention for image inpainting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 4169-4178.
[66] REN Y R, YU X M, ZHANG R N, et al. StructureFlow: image inpainting via structure-aware appearance flow[C]//Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway:IEEE, 2019: 181-190.
[67] LI J Y, HE F X, ZHANG L F, et al. Progressive reconstruction of visual structure for image inpainting[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 5961-5970.
[68] LIU Q Y, LU S H, LAN L Q. Research progress on occluded face detection methods[J]. Computer Engineering and Applications, 2020, 56(13): 33-46.
刘淇缘, 卢树华, 兰凌强. 遮挡人脸检测方法研究进展[J]. 计算机工程与应用, 2020, 56(13): 33-46.
[69] WANG Z Y, WANG G C, HUANG B J, et al. Masked face recognition dataset and application[J]. arXiv:2003.09093, 2020.
[70] CAO B, SHAN S G, ZHANG X H, et al. Baseline evaluations on the CAS-PEAL-R1 face database[C]//LNCS 3338: Proceedings of the 5th Chinese Conference on Biometric Recognition Advances in Biometric Person Authentication, Guangzhou, Dec 13-14, 2004. Berlin, Heidelberg: Springer, 2004: 370-378.
[71] DU L L. Research on occluded face inpainting[D]. Xi’an: Xi’an University of Technology, 2020.
杜利利. 遮挡人脸的修复方法研究[D]. 西安: 西安理工大学, 2020.
[72] GUO K Y, MA L P, HU W. Facial feature point detection and facial orientation calculation based on DCNN[J]. Computer Engineering and Applications, 2020, 56(4): 202-208.
郭克友, 马丽萍, 胡巍. 基于DCNN的人脸特征点检测及面部朝向计算[J]. 计算机工程与应用, 2020, 56(4): 202-208.
[73] JI Z, WANG H R, YU Y L, et al. A decadal survey of zero-shot image classification[J]. Scientia Sinica Information, 2019, 49(10): 1299-1320.
冀中, 汪浩然, 于云龙, 等. 零样本图像分类综述:十年进展[J]. 中国科学: 信息科学, 2019, 49(10): 1299-1320.
[74] XIAN Y Q, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 5542-5551.
[75] LIU Y, ZHU L, LIM K P, et al. Review and prospect of image super-resolution technology[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 181-199.
刘颖, 朱丽, 林庆帆, 等. 图像超分辨率技术的回顾与展望[J]. 计算机科学与探索, 2020, 14(2): 181-199.
[76] LI X M, LI W Y, REN D W, et al. Enhanced blind face restoration with multi-exemplar images and adaptive spatial feature fusion[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 2703-2712.
[77] DING C X, TAO D C. A comprehensive survey on pose-invariant face recognition[J]. ACM Transactions on Intelligent Systems and Technology, 2016, 7(3): 1-42.
[78] TERH?RST P, KOLF J N, DAMER N, et al. SER-FIQ: unsupervised estimation of face image quality based on stochastic embedding robustness[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 5650-5659.
[79] WANG J Y, YANG H T, LI G Y, et al. Research progress of generative adversarial network and its application in image processing[J]. Computer Engineering and Applications, 2021, 57(8): 26-35.
王晋宇, 杨海涛, 李高源, 等. 生成对抗网络及其图像处理应用研究进展[J]. 计算机工程与应用, 2021, 57(8): 26-35. |