[1] VAPNIK V N. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 1995.
[2] WANG L T, ZHANG J X, ZHANG J H. Application of crow search algorithm in SVM parameter optimization[J]. Com-puter Engineering and Applications, 2019, 55(21): 214-219.
王丽婷, 张金鑫, 张金华. 乌鸦搜索算法在SVM参数优化中的应用[J]. 计算机工程与应用, 2019, 55(21): 214-219.
[3] LIU Z W, LIU H Q, ZHAO Z K. Weighted least squares support vector machine for semi-supervised classification[J]. Wireless Personal Communications, 2018, 103(3): 1-12.
[4] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
[5] LILLEBERG J, YUN Z, ZHANG Y. Support vector mach-ines and word2vec for text classification with semantic features[C]//Proceedings of the 14th IEEE International Conference on Cognitive Informatics & Cognitive Computing, Beijing, Jul 6-8, 2015. Washington: IEEE Computer Society, 2015: 136-140.
[6] ZHENG B, MYINT S W, THENKABAIL P S, et al. A support vector machine to identify irrigated crop types using time-series landsat NDVI data[J]. International Journal of Applied Earth Observations & Geoinformation, 2015, 34(1): 103-112.
[7] HU Z H, XU Y W, ZHAO X L, et al. Multi-feature selection tracking based on support vector machine[J]. Journal of Applied Sciences, 2015, 33(5): 502-517.
胡昭华, 徐玉伟, 赵孝磊, 等. 基于支持向量机的多特征选择目标跟踪[J]. 应用科学学报, 2015, 33(5): 502-517.
[8] GAN L, YANG M. Pedestrian detection method based on ensemble SVM classifier[J]. Computer Engineering and Applications, 2019, 55(7): 194-198.
甘玲, 杨梦. 聚合支持向量机分类器的行人检测方法[J]. 计算机工程与应用, 2019, 55(7): 194-198.
[9] COLLOBERT R, BENGIO S. SVMTorch: support vector machines for large-scale regression problems[J]. Journal of Machine Learning Research, 2001, 1: 143-160.
[10] JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
[11] PENG X. TSVR: an efficient twin support vector machine for regression[J]. Neural Networks, 2010, 23(3): 365-372.
[12] SINGH M, CHADHA J, AHUJA P, et al. Reduced twin support vector regression[J]. Neurocomputing, 2010, 74(9): 1474-1477.
[13] SHAO Y H, ZHANG C H, YANG Z M, et al. An ε-twin support vector machine for regression[J]. Neural Computing & Applications, 2013, 23(1): 175-185.
[14] LU Z X, YANG Z X, GAO X Y. Least square twin support vector regression[J]. Computer Engineering and Applications, 2014, 50(23): 140-144.
卢振兴, 杨志霞, 高新豫. 最小二乘双支持向量回归机[J]. 计算机工程与应用, 2014, 50(23): 140-144.
[15] RASTOGI R, ANAND P, CHANDRA S. A ν-twin support vector machine based regression with automatic accuracy control[J]. Applied Intelligence, 2016, 46(3): 1-14.
[16] CAUWENBERGHS G, POGGIO T A. Incremental and decremental support vector machine learning[C]//Proceedings of the 2000 International Conference on Neural Information Processing Systems, Denver, Jan 1-3, 2000. Cambridge: MIT Press, 2000: 388-394.
[17] HE L, HAN K P, LIU Y. Self-adaptive SVM incremental learning algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 647-656.
何丽, 韩克平, 刘颖. 自适应的SVM增量算法[J]. 计算机科学与探索, 2019, 13(4): 647-656.
[18] MA J S, JAMES T, SIMON P. Accurate online support vector regression[J]. Neural Computation, 2003, 15(11): 2683- 2703.
[19] GU B J, PAN F. Accurate incremental online ν-support vector regression learning algorithm[J]. Control Theory & Applications, 2016, 33(4): 466-478.
顾斌杰, 潘丰. 精确增量式在线ν型支持向量回归机学习算法[J]. 控制理论与应用, 2016, 33(4): 466-478.
[20] ZHANG H R, WANG X D. Incremental and online learning algorithm for regression least squares support vector machine[J]. Chinese Journal of Computers, 2006, 29(3): 400-406.
张浩然, 汪晓东. 回归最小二乘支持向量机的增量和在线式学习算法[J]. 计算机学报, 2006, 29(3): 400-406.
[21] ZHAO Y P, DU Z H, ZHANG Z A, et al. Online independent reduced least squares support vector regression[J]. Information Sciences, 2012, 201(19): 37-52.
[22] HAO Y H, ZHANG H F. Incremental learning algorithm based on twin support vector regression[J]. Computer Science, 2016(2): 230-234.
郝运河, 张浩峰. 基于双支持向量回归机的增量学习算法[J]. 计算机科学, 2016(2): 230-234.
[23] TYLAVSKY D J, SOHIE G R L. Generalization of the matrix inversion lemma[J]. Proceedings of the IEEE, 1986, 74(7): 1050-1052.
[24] GOLUB G H, VAN LOAN C F. Matrix computations[M]. Baltimore: Johns Hopkins University Press, 1996.
[25] SUYKENS J A K, VANDEWALE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300.
[26] BALASUNDARAM S, TANVEER M. On Lagrangian twin support vector regression[J]. Neural Computing and Appli-cations, 2013, 22(S1): 257-267.
[27] TANVEER M, SHUBHAM K, AL-DHAIFALLAH M, et al. An efficient regularized K-nearest neighbor-based weighted twin support vector regression[J]. Knowledge-Based Systems, 2016, 94: 70-87.
[28] TANVEER M, SHUBHAM K. A regularization on Lagrangian twin support vector regression[J]. International Journal of Machine Learning and Cybernetics, 2017, 8(3): 807-821. |