[1] MAASS W. Networks of spiking neurons: the third genera-tion of neural network models[J]. Neural Networks, 1997, 10(9): 1659-1671.
[2] MA D, SHEN J, GU Z, et al. Darwin: a neuromorphic hardware co-processor based on spiking neural networks[J]. Journal of Systems Architecture, 2017, 77: 43-51.
[3] FURBER S B, GALLUPPI F, TEMPLE S, et al. The spin-naker project[J]. Proceedings of the IEEE, 2014, 102(5): 652-665.
[4] DAVIES M, SRINIVASA N, LIN T H, et al. Loihi: a neuro-morphic manycore processor with on-chip learning[J]. IEEE Micro, 2018, 38(1): 82-99.
[5] MEROLLA P A, ARTHUR J V, ALVAREZ-ICAZA R, et al.A million spiking-neuron integrated circuit with a scalable communication network and interface[J]. Science, 2014, 345(6197): 668-673.
[6] SCHEMMEL J, KRIENER L, MüLLER P, et al. An acce-lerated analog neuromorphic hardware system emulating NMDA-and calcium-based non-linear dendrites[C]//Proceed-ings of the 2017 International Joint Conference on Neural Networks, Anchorage, May 14-19, 2017. Piscataway: IEEE,2017: 2217-2226.
[7] BENJAMIN B V, GAO P, MCQUINN E, et al. Neurogrid: a mixed-analog-digital multichip system for large-scale ne-ural simulations[J]. Proceedings of the IEEE, 2014, 102(5): 699-716.
[8] POTJANS T C, DIESMANN M. The cell-type specific cor-tical microcircuit: relating structure and activity in a full-scale spiking network model[J]. Cerebral Cortex, 2014, 24(3): 785-806.
[9] VAN ALBADA S J, ROWLEY A G, SENK J, et al. Perfor-mance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model[J]. Frontiers in Neuroscience, 2018, 12: 291.
[10] KNIGHT J C, NOWOTNY T. GPUs outperform current HPC and neuromorphic solutions in terms of speed and energy when simulating a highly-connected cortical model[J]. Fron-tiers in Neuroscience, 2018, 12: 941.
[11] SUSANNE K, POTJANS T C, EPPLER J M, et al. Meet-ing the memory challenges of brain-scale network simula-tion[J]. Frontiers in Neuroinformatics, 2012, 5: 35.
[12] SCHENCK W, ADINETZ A V, ZAYTSEV Y V, et al. Performance model for large-scale neural simulations with NEST[C]//Proceedings of the Supercomputing 2014, New Orleans, Nov 16-21, 2014: 1-2.
[13] BRETTE R, RUDOLPH M, CARNEVALE T, et al. Simul-ation of networks of spiking neurons: a review of tools and strategies[J]. Journal of Computational Neuroscience, 2007, 23(3): 349-398.
[14] KASS R E, AMARI S I, ARAI K, et al. Computational neuro-science: mathematical and statistical perspectives[J]. Annual Review of Statistics and Its Application, 2018, 3: 1-37.
[15] CAO Y Q, CHEN Y, KHOSLA D. Spiking deep convolu-tional neural networks for energy-efficient object recogni-tion[J]. International Journal of Computer Vision, 2015, 113(1): 54-66.
[16] DIEHL P U, COOK M. Unsupervised learning of digit recog-nition using spike-timing-dependent plasticity[J]. Frontiers in Computational Neuroscience, 2015, 9: 99.
[17] GERSTNER W, KISTLER W M, NAUD R, et al. Neuronal dynamics: from single neurons to networks and models of cognition[M]. New York: Cambridge University Press, 2014.
[18] BI G Q, POO M M. Synaptic modifications in cultured hi-ppocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type[J]. Journal of Neuro-science, 2012, 18(24): 10464-10472.
[19] FIDJELAND A K, SHANAHAN M P. Accelerated simu-lation of spiking neural networks using GPUs[C]//Proceed-ings of the 2010 International Joint Conference on Neural Networks, Barcelona, Jul 18-23, 2010. Piscataway: IEEE, 2010: 1-8.
[20] RUSSELL A, ORCHARD G, DONG Y, et al. Optimization methods for spiking neurons and networks[J]. IEEE Tran-sactions on Neural Networks, 2010, 21(12): 1950-1962.
[21] GEWALTIG M O, DIESMANN M. NEST (neural simula-tion tool)[J]. Scholarpedia, 2007, 2(4): 1430.
[22] STIMBERG M, GOODMAN D, BENICHOUX V, et al. Equation-oriented speci?cation of neural models for simula-tions[J]. Frontiers in Neuroinformatics, 2014, 8: 1-15.
[23] HINES M, CARNEVALE N. The NEURON simulation en-vironment[J]. Neural Computation, 2014, 9(6): 1179-1209.
[24] LI K, ZHANG L F, ZHANG X W, et al. Design of spiking neural network simulator based on FPGA cluster[J]. Com-puter Engineering, 2020, 46(10): 201-209.
李康, 张鲁飞, 张新伟, 等. 基于FPGA集群的脉冲神经网络仿真器[J]. 计算机工程, 2020, 46(10): 201-209.
[25] ZHANG X W, LI K, YU G J, et al. Research and imple-mentation of accelerating neuromorphic computing based on ZYNQ cluster[J]. Computer Engineering and Applica-tions, 2020, 56(21): 65-71.
张新伟, 李康, 郁龚健, 等. 基于ZYNQ集群的神经形态计算加速研究与实现[J]. 计算机工程与应用, 2020, 56(21): 65-71.
[26] MORRISON A, AERTSEN A, DIESMANN M. Spike-timing-dependent plasticity in balanced random networks[J]. Neural Computation, 2007, 19(6): 1437-1467.
[27] KHERADPISHEH S R, GANJTABESH M, THORPE S J, et al. STDP-based spiking deep convolutional neural net-works for object recognition[J]. Neural Networks, 2018, 99: 56-67. |