[1] ZHOU Y Q, HUANG Z X. Artificial glow worm swarm optimization algorithm for TSP[J]. Control and Decision, 2012, 27(12): 1816-1821.
周永权, 黄正新. 求解TSP的人工萤火虫群优化算法[J]. 控制与决策, 2012, 27(12): 1816-1821.
[2] QIAO S, LV Z M, ZHANG N. Improved particle swarm optimization algorithm based on Hamming distance for travel-ing salesman problem[J]. Journal of Computer Applications, 2017, 37(10): 2767-2772.
乔屾, 吕志民, 张楠. 基于汉明距离的改进粒子群算法求解旅行商问题[J]. 计算机应用, 2017, 37(10): 2767-2772.
[3] ZHANG X L, CHEN X W, XIAO H, et al. A new imperia-list competitive algorithm for solving TSP problem[J]. Con-trol and Decision, 2016, 31(4): 586-596.
张鑫龙, 陈秀万, 肖汉, 等. 一种求解旅行商问题的新型帝国竞争算法[J]. 控制与决策, 2016, 31(4): 586-596.
[4] DORIGO M, MANIEZZO V, COLORNI A. Ant system: op-timization by a colony of cooperating agents[J]. IEEE Tran-sactions on Systems, Man, and Cybernetics: Part B, 1996, 26(1): 29-41.
[5] DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman pro-blem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
[6] STUTZLE T, HOOS H H. MAX-MIN, ant system[M]. New York: Elsevier Science Inc., 2000.
[7] LIU X Y, TAN L M, YANG C X, et al. Self-adjustable dy-namic path planning of unknown environment based on ant colony-clustering algorithm[J]. Journal of Frontiers of Com-puter Science and Technology, 2019, 13(5): 846-857.
刘新宇, 谭力铭, 杨春曦, 等. 未知环境下的蚁群-聚类自适应动态路径规划[J]. 计算机科学与探索, 2019, 13(5): 846-857.
[8] WEI J, WANG J J, WANG J, et al. Three dimensional path planning based on improved ant colony algorithm[J]. Com-puter Engineering and Applications, 2020, 56(17): 217-223.
魏江, 王建军, 王健, 等. 基于改进蚁群算法的三维航迹规划[J]. 计算机工程与应用, 2020, 56(17): 217-223.
[9] YOU X M, LIU S, LV J Q. Ant colony algorithm based on dynamic search strategy and its application on path plann-ing of robot[J]. Control and Decision, 2017, 32(3): 552-556.
游晓明, 刘升, 吕金秋. 一种动态搜索策略的蚁群算法及其在机器人路径规划中的应用[J]. 控制与决策, 2017, 32(3): 552-556.
[10] GANGADHARAN M M, SALGAONKAR A. Ant colony optimization and firefly algorithms for robotic motion plann-ing in dynamic environments[J]. Engineering Reports, 2020, 2(3).
[11] ZHAO Q C, YANG Y W, XIE S Y, et al. Research on im-provement of ant colony optimization algorithm for MPR under dense MANET[J]. Computer Engineering, 2021, 47(4): 135-140.
赵启超, 杨余旺, 谢勇盛, 等. 密集MANET下MPR的蚁群优化算法改进研究[J]. 计算机工程, 2021, 47(4): 135-140.
[12] LIU X F, ZHAN Z H, DENG J D, et al. An energy efficient ant colony system for virtual machine placement in cloud computing[J]. IEEE Transactions on Evolutionary Comput-ation, 2018, 22(1): 113-128.
[13] ZHANG D H, YOU X M, LIU S. Dynamic grouping ant colony algorithm combined with cat swarm optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891.
张德惠, 游晓明, 刘升. 融合猫群算法的动态分组蚁群算法[J]. 计算机科学与探索, 2020, 14(5): 880-891.
[14] ZHANG M X, ZHANG D M, YANG J Q, et al. Ant colony optimization algorithm based on Tabu search[J]. Communi-cations Technology, 2017, 50(8): 1658-1663.
张慕雪, 张达敏, 杨菊蜻, 等. 基于禁忌搜索的蚁群优化算法[J]. 通信技术, 2017, 50(8): 1658-1663.
[15] LI J, TONG Z, WANG Z. Approach to solve TSP with par-allel ACS-2-opt[J]. Computer Science, 2018, 45(S2): 138-142.
李俊, 童钊, 王政. 一种并行ACS-2-opt算法处理TSP问题的方法[J]. 计算机科学, 2018, 45(S2): 138-142.
[16] HUANG Y Q, YANG S L, LIANG C Y. Improved inter-active ant colony algorithm and its application[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(12): 1720-1728.
黄永青, 杨善林, 梁昌勇. 改进交互式蚁群算法及其应用 [J]. 计算机科学与探索, 2016, 10(12): 1720-1728.
[17] DU P Z, TANG Z M, SUN Y. An object-oriented multi-role ant colony optimization algorithm for solving TSP problem[J]. Control and Decision, 2014, 29(10): 1729-1736.
杜鹏桢, 唐振民, 孙研. 一种面向对象的多角色蚁群算法及其TSP问题求解[J]. 控制与决策, 2014, 29(10): 1729-1736.
[18] XU K B, LU H Y, CHENG B Y, et al. Ant colony optimi-zation algorithm based on improved pheromones double updating and local optimization for solving TSP[J]. Journal of Computer Applications, 2017, 37(6): 1686-1691.
许凯波, 鲁海燕, 程毕芸, 等. 求解TSP的改进信息素二次更新与局部优化蚁群算法[J]. 计算机应用, 2017, 37(6): 1686-1691.
[19] WU H F, CHEN X Q, MAO Q H, et al. Improved ant colony algorithm based on natural selection strategy for solving TSP problem[J]. Journal on Communications, 2013, 34(4): 165-170.
吴华锋, 陈信强, 毛奇凰, 等. 基于自然选择策略的蚁群算法求解TSP问题[J]. 通信学报, 2013, 34(4): 165-170.
[20] ZHANG Y, QUAN H, WEN J F. Mobile robot path plann-ing based on the wolf ant colony hybrid algorithm[J]. Jour-nal of Huazhong University of Science and Technology(Nature Science Edition), 2020, 48(1): 127-132.
张毅, 权浩, 文家富. 基于独狼蚁群混合算法的移动机器人路径规划[J]. 华中科技大学学报(自然科学版), 2020, 48(1): 127-132. |