计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (10): 2405-2414.DOI: 10.3778/j.issn.1673-9418.2102073
• 图形图像 • 上一篇
收稿日期:
2021-03-01
修回日期:
2021-06-07
出版日期:
2022-10-01
发布日期:
2021-06-23
通讯作者:
+ E-mail: 1149278938@qq.com作者简介:
张海涛(1974—),男,博士,教授,硕士生导师,CCF会员,主要研究方向为机器学习、图形图像处理等。基金资助:
Received:
2021-03-01
Revised:
2021-06-07
Online:
2022-10-01
Published:
2021-06-23
About author:
ZHANG Haitao, born in 1974, Ph.D., profes-sor, M.S. supervisor, member of CCF. His resea-rch interests include machine learning, graphics and image processing, etc.Supported by:
摘要:
基于双分支的胶囊网络分类方法在两个通道分别提取光谱信息和空间信息,既保留了双分支卷积神经网络的特征提取方式,又提高了分类精度。但由于高光谱图像(HSI)通常由几百个通道组成,在训练胶囊网络时,动态路由过程产生了大量的训练参数。为此提出1D和2D约束窗口分别减少来自两个提取通道的胶囊数量。它以胶囊向量组为计算单位进行卷积运算,来减少胶囊网络的参数量和计算复杂度。基于该降参优化方法提出一个新的双分支胶囊神经网络(DuB-ConvCapsNet-MRF),并将其应用在高光谱图像分类任务中。此外,为进一步提高分类性能,引入马尔可夫随机场(MRF)对空间区域进行平滑后处理,获得最终输出。对两个代表性高光谱图像数据集进行消融实验并与现有的6个分类方法进行比较,结果表明,DuB-ConvCapsNet-MRF在分类精度上都优于其他方法,并且有效降低了胶囊网络的训练代价。
中图分类号:
张海涛, 柴思敏. 改进双分支胶囊网络的高光谱图像分类[J]. 计算机科学与探索, 2022, 16(10): 2405-2414.
ZHANG Haitao, CHAI Simin. Improved Two-Branch Capsule Network for Hyperspectral Image Classification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2405-2414.
Hyper-parameter | Optimized value |
---|---|
Optimizer | Adam |
Number of epochs | 100 |
Dropout | 0.2 |
Learning rate | 0.01 |
Learning rate decay | 0.9 |
PCA | 5 |
| 0.5 |
| 0.9 |
| 0.1 |
表1 用于训练所提出的DuB-ConvCapsNet-MRF的超参数
Table 1 Hyper-parameters used for training proposed DuB-ConvCapsNet-MRF
Hyper-parameter | Optimized value |
---|---|
Optimizer | Adam |
Number of epochs | 100 |
Dropout | 0.2 |
Learning rate | 0.01 |
Learning rate decay | 0.9 |
PCA | 5 |
| 0.5 |
| 0.9 |
| 0.1 |
Class | SVM | 2D-CNN | 3D- CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 77.88 | 95.67 | 98.16 | 98.45 | 90.08 | 89.92 | 97.72 |
2 | 0 | 94.31 | 97.86 | 98.77 | 96.91 | 98.49 | 99.31 |
3 | 25.16 | 91.76 | 99.85 | 96.95 | 97.86 | 97.62 | 96.26 |
4 | 68.17 | 81.38 | 98.13 | 98.13 | 96.81 | 98.84 | 99.46 |
5 | 46.54 | 98.46 | 98.64 | 100.00 | 97.54 | 99.91 | 100.00 |
6 | 80.77 | 99.42 | 100.00 | 98.03 | 99.35 | 98.87 | 98.13 |
7 | 35.97 | 96.47 | 99.46 | 92.24 | 92.00 | 96.56 | 97.51 |
8 | 97.07 | 100.00 | 99.51 | 100.00 | 99.46 | 100.00 | 98.16 |
9 | 45.00 | 62.46 | 60.00 | 60.00 | 68.48 | 71.79 | 73.26 |
10 | 71.70 | 95.78 | 97.89 | 99.67 | 98.60 | 99.78 | 100.00 |
11 | 86.92 | 97.32 | 98.67 | 98.92 | 97.91 | 99.17 | 99.84 |
12 | 61.73 | 93.78 | 100.00 | 99.41 | 98.46 | 98.82 | 97.94 |
13 | 91.85 | 97.89 | 98.87 | 100.00 | 100.00 | 100.00 | 100.00 |
14 | 96.40 | 99.67 | 99.46 | 97.21 | 95.84 | 98.26 | 98.82 |
15 | 45.53 | 87.61 | 99.21 | 99.16 | 100.00 | 99.16 | 98.63 |
16 | 82.81 | 88.63 | 96.16 | 89.71 | 85.61 | 99.25 | 92.17 |
OA | 77.63 | 95.13 | 98.45 | 98.37 | 97.15 | 98.53 | 98.74 |
AA | 63.34 | 92.54 | 96.37 | 95.36 | 94.68 | 96.65 | 96.70 |
Kappa | 84.21 | 94.91 | 98.71 | 98.23 | 98.31 | 98.47 | 98.93 |
训练 时间/s | 12 | 2 426 | 33 413 | 3 120 | 5 124 | 21 670 | 13 268 |
表2 不同方法在IP数据集上的分类结果
Table 2 Classification results of different
Class | SVM | 2D-CNN | 3D- CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 77.88 | 95.67 | 98.16 | 98.45 | 90.08 | 89.92 | 97.72 |
2 | 0 | 94.31 | 97.86 | 98.77 | 96.91 | 98.49 | 99.31 |
3 | 25.16 | 91.76 | 99.85 | 96.95 | 97.86 | 97.62 | 96.26 |
4 | 68.17 | 81.38 | 98.13 | 98.13 | 96.81 | 98.84 | 99.46 |
5 | 46.54 | 98.46 | 98.64 | 100.00 | 97.54 | 99.91 | 100.00 |
6 | 80.77 | 99.42 | 100.00 | 98.03 | 99.35 | 98.87 | 98.13 |
7 | 35.97 | 96.47 | 99.46 | 92.24 | 92.00 | 96.56 | 97.51 |
8 | 97.07 | 100.00 | 99.51 | 100.00 | 99.46 | 100.00 | 98.16 |
9 | 45.00 | 62.46 | 60.00 | 60.00 | 68.48 | 71.79 | 73.26 |
10 | 71.70 | 95.78 | 97.89 | 99.67 | 98.60 | 99.78 | 100.00 |
11 | 86.92 | 97.32 | 98.67 | 98.92 | 97.91 | 99.17 | 99.84 |
12 | 61.73 | 93.78 | 100.00 | 99.41 | 98.46 | 98.82 | 97.94 |
13 | 91.85 | 97.89 | 98.87 | 100.00 | 100.00 | 100.00 | 100.00 |
14 | 96.40 | 99.67 | 99.46 | 97.21 | 95.84 | 98.26 | 98.82 |
15 | 45.53 | 87.61 | 99.21 | 99.16 | 100.00 | 99.16 | 98.63 |
16 | 82.81 | 88.63 | 96.16 | 89.71 | 85.61 | 99.25 | 92.17 |
OA | 77.63 | 95.13 | 98.45 | 98.37 | 97.15 | 98.53 | 98.74 |
AA | 63.34 | 92.54 | 96.37 | 95.36 | 94.68 | 96.65 | 96.70 |
Kappa | 84.21 | 94.91 | 98.71 | 98.23 | 98.31 | 98.47 | 98.93 |
训练 时间/s | 12 | 2 426 | 33 413 | 3 120 | 5 124 | 21 670 | 13 268 |
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 92.13 | 90.76 | ||
√ | √ | 93.79 | 92.82 | |
√ | √ | 97.21 | 96.48 | |
√ | √ | √ | 98.74 | 98.93 |
表3 不同情况下的模型在IP数据集的分类准确性
Table 3 Classification accuracy of models in different situations on IP dataset
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 92.13 | 90.76 | ||
√ | √ | 93.79 | 92.82 | |
√ | √ | 97.21 | 96.48 | |
√ | √ | √ | 98.74 | 98.93 |
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 93.94 | 91.90 | ||
√ | √ | 95.76 | 93.58 | |
√ | √ | 98.13 | 97.16 | |
√ | √ | √ | 99.61 | 99.34 |
表4 不同情况下的模型在UP数据集的分类准确性
Table 4 Classification accuracy of models in different situations on UP dataset
MRF | 2D-ConvCaps/ 1D-ConvCaps | PCA | OA/% | Kappa/% |
---|---|---|---|---|
√ | 93.94 | 91.90 | ||
√ | √ | 95.76 | 93.58 | |
√ | √ | 98.13 | 97.16 | |
√ | √ | √ | 99.61 | 99.34 |
class | SVM | 2D-CNN | 3D-CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 75.45 | 87.61 | 99.65 | 98.75 | 97.41 | 99.97 | 99.46 |
2 | 92.41 | 88.57 | 99.17 | 99.16 | 97.25 | 98.46 | 99.43 |
3 | 96.23 | 89.42 | 94.76 | 100.00 | 90.64 | 98.72 | 100.00 |
4 | 95.76 | 90.57 | 99.29 | 98.13 | 96.71 | 99.67 | 99.71 |
5 | 98.01 | 90.64 | 100.00 | 99.87 | 99.18 | 99.16 | 99.13 |
6 | 93.98 | 70.67 | 98.74 | 100.00 | 98.34 | 99.43 | 98.87 |
7 | 82.71 | 88.96 | 96.96 | 100.00 | 98.74 | 99.56 | 100.00 |
8 | 64.64 | 89.79 | 99.26 | 99.34 | 90.74 | 99.81 | 99.67 |
9 | 97.81 | 91.13 | 99.16 | 99.16 | 99.28 | 98.46 | 99.38 |
OA | 75.69 | 87.46 | 98.91 | 99.57 | 96.16 | 99.24 | 99.61 |
AA | 88.56 | 87.48 | 98.55 | 99.38 | 96.48 | 99.25 | 99.52 |
Kappa | 70.04 | 85.17 | 99.22 | 99.26 | 95.33 | 97.98 | 99.34 |
训练 时间/s | 46 | 7 261 | 100 496 | 9 346 | 14 962 | 63 570 | 39 715 |
表5 不同方法在UP数据集上的分类结果 单位:%
Table 5 Classification results of different methods on UP dataset
class | SVM | 2D-CNN | 3D-CNN | DCD-CNN | CNN-MRF | Caps-MRF | Proposed |
---|---|---|---|---|---|---|---|
1 | 75.45 | 87.61 | 99.65 | 98.75 | 97.41 | 99.97 | 99.46 |
2 | 92.41 | 88.57 | 99.17 | 99.16 | 97.25 | 98.46 | 99.43 |
3 | 96.23 | 89.42 | 94.76 | 100.00 | 90.64 | 98.72 | 100.00 |
4 | 95.76 | 90.57 | 99.29 | 98.13 | 96.71 | 99.67 | 99.71 |
5 | 98.01 | 90.64 | 100.00 | 99.87 | 99.18 | 99.16 | 99.13 |
6 | 93.98 | 70.67 | 98.74 | 100.00 | 98.34 | 99.43 | 98.87 |
7 | 82.71 | 88.96 | 96.96 | 100.00 | 98.74 | 99.56 | 100.00 |
8 | 64.64 | 89.79 | 99.26 | 99.34 | 90.74 | 99.81 | 99.67 |
9 | 97.81 | 91.13 | 99.16 | 99.16 | 99.28 | 98.46 | 99.38 |
OA | 75.69 | 87.46 | 98.91 | 99.57 | 96.16 | 99.24 | 99.61 |
AA | 88.56 | 87.48 | 98.55 | 99.38 | 96.48 | 99.25 | 99.52 |
Kappa | 70.04 | 85.17 | 99.22 | 99.26 | 95.33 | 97.98 | 99.34 |
训练 时间/s | 46 | 7 261 | 100 496 | 9 346 | 14 962 | 63 570 | 39 715 |
| | |||||
---|---|---|---|---|---|---|
4 | 8 | 16 | 32 | 64 | 未降参 | |
64 | 354 816 | 709 632 | 1 419 264 | 2 838 528 | 5 677 056 | 4 956 160 |
32 | 281 088 | 562 176 | 1 124 352 | 2 248 704 | 4 497 408 | 2 478 080 |
16 | 244 224 | 488 448 | 976 896 | 1 953 792 | 3 907 584 | 1 239 040 |
表6 输入和特征提取的不同向量组个数带来的参数量
Table 6 Amount of parameters brought by different number of vector groups for input and feature extraction
| | |||||
---|---|---|---|---|---|---|
4 | 8 | 16 | 32 | 64 | 未降参 | |
64 | 354 816 | 709 632 | 1 419 264 | 2 838 528 | 5 677 056 | 4 956 160 |
32 | 281 088 | 562 176 | 1 124 352 | 2 248 704 | 4 497 408 | 2 478 080 |
16 | 244 224 | 488 448 | 976 896 | 1 953 792 | 3 907 584 | 1 239 040 |
[1] | CAO X H, LI R J, GE Y M, et al. Densely connected deep random forest for hyperspectral imagery classification[J]. Inter-national Journal of Remote Sensing, 2019, 40(9): 3606-3622. |
[2] | LANTHIER Y, BANNARI A, HABOUDANE D, et al. Hy-perspectral data segmentation and classification in preci-sion agriculture: a multi-scale analysis[C]// Proceedings of the 2008 IEEE International Geoscience & Remote Sensing Symposium, Boston, Jul 8-11, 2008. Piscataway: IEEE, 2008: 585-588. |
[3] |
GHAMISI P, YOKOYA N, LI J, et al. Advances in hyper-spectral image and signal processing: a comprehensive over-view of the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 37-78.
DOI URL |
[4] | WANG Q, LIU S T, CHANUSSOT J, et al. Scene classifi-cation with recurrent attention of VHR remote sensing ima-ges[J]. IEEE Transactions on Geoscience and Remote Sen-sing, 2018, 57(2): 1155-1167. |
[5] | LANDGREBE D. Hyperspectral image data analysis[J]. IEEE Signal Processing Magazine, 2002, 19(1): 17-28. |
[6] |
FAUVEL M, TARABALKA Y, BENEDIKTSSON J A, et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 2012, 101(3): 652-675.
DOI URL |
[7] | HAM J, CHEN Y, CRAWFORD M M, et al. Investigation of the random forest framework for classification of hyper-spectral data[J]. IEE20E Transactions on Geoscience and Remote Sensing, 2005, 43(3): 492-501. |
[8] |
CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse represen-tation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
DOI URL |
[9] |
HAUT J M, PAOLETTI M, PLAZA J, et al. Cloud implemen-tation of the K-means algorithm for hyperspectral image analysis[J]. The Journal of Supercomputing, 2017, 73(1): 514-529.
DOI URL |
[10] | LIU W B, WANG Z D, LIU X H, et al. A survey of deep neural network architectures and their applications[J]. Neuro-computing, 2017, 234: 11-26. |
[11] |
CHEN Y S, LIN Z H, ZHAO X, et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6): 2094-2107.
DOI URL |
[12] | CHEN Y S, ZHAO X, JIA X P. Spectral-spatial classifica-tion of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Obser-vations and Remote Sensing, 2015, 8(6): 2381-2392. |
[13] |
万亚玲, 钟锡武, 刘慧, 等. 卷积神经网络在高光谱图像分类中的应用综述[J]. 计算机工程与应用, 2021, 57(4): 1-10.
DOI |
WAN Y L, ZHONG X W, LIU H, et al. Survey of applica-tion of convolutional neural network in classification of hyperspectral images[J]. Computer Engineering and Appli-cations, 2021, 57(4): 1-10. | |
[14] | MAKANTASIS K, KARANTZALOS K, DOULAMIS A D, et al. Deep supervised learning for hyperspectral data classi-fication through convolutional neural networks[C]// Procee-dings of the 2015 IEEE International Geoscience and Re-mote Sensing Symposium, Milan, Jul 26-31, 2015. Piscata-way: IEEE, 2015: 4959-4962. |
[15] |
HAMIDA A B, BENOIT A, LAMBERT P, et al. 3-D deep learning approach for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4420-4434.
DOI URL |
[16] |
佘海龙, 解山娟, 邹静洁. 标准分数降维的3D-CNN高光谱遥感图像分类[J]. 计算机工程与应用, 2021, 57(4): 169-175.
DOI |
SHE H L, XIE S J, ZOU J J. 3D-CNN with standard score dimensionality reduction for hyperspectral remote sensing images classification[J]. Computer Engineering and Appli-cations, 2021, 57(4): 169-175. | |
[17] |
XU X D, LI W, RAN Q, et al. Multisource remote sensing data classification based on convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 56(2): 937-949.
DOI URL |
[18] |
刘启超, 肖亮, 刘芳, 等. SSCDenseNet: 一种空-谱卷积稠密网络的高光谱图像分类算法[J]. 电子学报, 2020, 48(4): 751-762.
DOI |
LIU Q C, XIAO L, LIU F, et al. SSCDenseNet: a spectral-spatial convolutional dense network for hyperspectral image classification[J]. Acta Electronica Sinica, 2020, 48(4): 751-762. | |
[19] | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[J]. arXiv:1710.09829, 2017. |
[20] | JIANG X F, LIU W B, ZHANG Y, et al. Spectral-spatial hy-perspectral image classification using dual-channel capsule networks[J]. IEEE Geoscience and Remote Sensing Let-ters, 2021, 18(6): 1094-1098. |
[21] |
JIANG X F, ZHANG Y, LIU W B, et al. Hyperspectral ima-ge classification with CapsNet and Markov random fields[J]. IEEE Access, 2020, 8: 191956-191968.
DOI URL |
[22] | ZHANG H T, MENG L G, WEI X, et al. 1D-convolutional capsule network for hyperspectral image classification[J]. arXiv:1903.09834, 2019. |
[23] | TARABALKA Y, FAUVEL M, CHANUSSOT J, et al. SVM- and MRF-based method for accurate classification of hy-perspectral images[J]. IEEE Geoscience and Remote Sen-sing Letters, 2010, 7(4): 736-740. |
[24] |
YUE J, ZHAO W Z, MAO S J, et al. Spectral-spatial clas-sification of hyperspectral images using deep convolutio-nal neural networks[J]. Remote Sensing Letters, 2015, 6(6): 468-477.
DOI URL |
[25] |
LI Y, ZHANG H K, SHEN Q. Spectral-spatial classification of hyperspectral imagery with 3D convolutional neural network[J]. Remote Sensing, 2017, 9(1): 67.
DOI URL |
[26] | 胡丽, 单锐, 王芳, 等. 基于双通道空洞卷积神经网络的高光谱图像分类[J]. 激光与光电子学进展, 2020, 57(12): 348-354. |
HU L, SHAN R, WANG F, et al. Hyperspectral image clas-sification based on dual-channel dilated convolution neural network[J]. Laser & Optoelectronics Progress, 2020, 57(12): 348-354. | |
[27] |
CAO X Y, ZHOU F, XU L, et al. Hyperspectral image classi-fication with Markov random fields and a convolutional neural network[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2354-2367.
DOI URL |
[1] | 王振华,何婉雯,孙婧琦,曲念毅,黄冬梅. 改进水平集模型的海岛边界快速分割方法研究[J]. 计算机科学与探索, 2019, 13(7): 1206-1216. |
[2] | 祖宝开,夏克文,牛文佳,姜晓庆. 分块低秩图的遥感影像半监督分类应用[J]. 计算机科学与探索, 2019, 13(7): 1217-1226. |
[3] | 季艳,鲁克文,张英慧. 海量遥感数据分布式集群化存储技术研究[J]. 计算机科学与探索, 2017, 11(9): 1398-1404. |
[4] | 陈艺虾,孙权森,徐焕宇,耿蕾蕾. SURF算法和RANSAC算法相结合的遥感图像匹配方法[J]. 计算机科学与探索, 2012, 6(9): 822-828. |
[5] | 高 辉, 张茂军, 徐 玮. 遥感图像辅助的折反射全向图三维重构[J]. 计算机科学与探索, 2011, 5(2): 147-154. |
[6] | 吴 昊1 , 李士进1+ , 林 林2 , 万定生1 . 多策略结合的高光谱图像波段选择新方法*[J]. 计算机科学与探索, 2010, 4(5): 464-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||