计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (11): 2628-2641.DOI: 10.3778/j.issn.1673-9418.2104105
收稿日期:
2021-04-29
修回日期:
2021-07-02
出版日期:
2022-11-01
发布日期:
2021-07-15
通讯作者:
+ E-mail: wanglg@gsau.edu.cn作者简介:
陈兰(1995—),女,甘肃临洮人,硕士研究生,主要研究方向为智能信息处理。基金资助:
Received:
2021-04-29
Revised:
2021-07-02
Online:
2022-11-01
Published:
2021-07-15
About author:
CHEN Lan, born in 1995, M.S. candidate. Her re-search interest is intelligent information processing.Supported by:
摘要:
针对目前人工蜂群算法(ABC)在求解函数优化问题时存在开发能力差、易陷入局部最优、收敛速度慢等问题,提出了一种极值个体引导的人工蜂群算法(EABC)。首先,该算法在雇佣蜂和跟随蜂的搜索中利用全局极值个体和邻域极值个体引导搜索,全局极值个体引导搜索有利于种群中优良个体的保留和发展,使算法跳出局部极值,避免早熟收敛。邻域极值个体引导搜索有利于增强搜索精度,提高算法的收敛速度,并通过随机数
中图分类号:
陈兰, 王联国. 极值个体引导的人工蜂群算法[J]. 计算机科学与探索, 2022, 16(11): 2628-2641.
CHEN Lan, WANG Lianguo. Extreme Individual Guided Artificial Bee Colony Algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2628-2641.
Function | Function name | D | C | Searching space | Function expression | |
---|---|---|---|---|---|---|
Sphere | 30 | US | [-100,100] | |||
Elliptic | 30 | UN | [-100,100] | |||
SumSquares | 30 | US | [-10,10] | |||
SumPower | 30 | MS | [-10,10] | |||
Schwefel2.22 | 30 | UN | [-10,10] | |||
Schwefel2.21 | 30 | UN | [-100,100] | |||
Step | 30 | US | [-100,100] | |||
Quartic | 30 | US | [-1.28,1.28] | |||
QuarticWN | 30 | US | [-1.28,1.28] | |||
Rosebrock | 30 | UN | [-10,10] | |||
Rastrigin | 30 | MS | [-5.12,5.12] | |||
Non_Continuous Rastrigin | 30 | MS | [-5.12,5.12] | |||
Griewank | 30 | MN | [-600,600] | |||
Schwefel2.26 | 30 | UN | [-500,500] | |||
Ackley | 30 | MN | [-32,32] | |||
Penalized1 | 30 | MN | [-50,50] | |||
Penalized2 | 30 | MN | [-50,50] | |||
Alpine | 30 | MS | [-10,10] | |||
Levy | 30 | MN | [-10,10] | |||
Weierstrass | 30 | MN | [-0.5,0.5] | |||
Schaffer | 30 | MN | [-100,100] | |||
Himmelblau | 30 | MS | [-5,5] | |||
Michalewicz | 30 | MS | [0,π] | |||
Shifted_Sphere | 30 | US | [-100,100] | |||
Function | Function name | D | C | Searching space | Function expression | |
Shifted_Rastrigin | 30 | MS | [-5.12,5.12] | |||
Shifted_Griewank | 30 | MN | [-600,600] | |||
Shifted_Ackley | 30 | MN | [-32,32] | |||
Shifted_Alpine | 30 | MN | [-10,10] |
表1 28个标准测试函数参数
Table 1 Parameters of 28 standard test functions
Function | Function name | D | C | Searching space | Function expression | |
---|---|---|---|---|---|---|
Sphere | 30 | US | [-100,100] | |||
Elliptic | 30 | UN | [-100,100] | |||
SumSquares | 30 | US | [-10,10] | |||
SumPower | 30 | MS | [-10,10] | |||
Schwefel2.22 | 30 | UN | [-10,10] | |||
Schwefel2.21 | 30 | UN | [-100,100] | |||
Step | 30 | US | [-100,100] | |||
Quartic | 30 | US | [-1.28,1.28] | |||
QuarticWN | 30 | US | [-1.28,1.28] | |||
Rosebrock | 30 | UN | [-10,10] | |||
Rastrigin | 30 | MS | [-5.12,5.12] | |||
Non_Continuous Rastrigin | 30 | MS | [-5.12,5.12] | |||
Griewank | 30 | MN | [-600,600] | |||
Schwefel2.26 | 30 | UN | [-500,500] | |||
Ackley | 30 | MN | [-32,32] | |||
Penalized1 | 30 | MN | [-50,50] | |||
Penalized2 | 30 | MN | [-50,50] | |||
Alpine | 30 | MS | [-10,10] | |||
Levy | 30 | MN | [-10,10] | |||
Weierstrass | 30 | MN | [-0.5,0.5] | |||
Schaffer | 30 | MN | [-100,100] | |||
Himmelblau | 30 | MS | [-5,5] | |||
Michalewicz | 30 | MS | [0,π] | |||
Shifted_Sphere | 30 | US | [-100,100] | |||
Function | Function name | D | C | Searching space | Function expression | |
Shifted_Rastrigin | 30 | MS | [-5.12,5.12] | |||
Shifted_Griewank | 30 | MN | [-600,600] | |||
Shifted_Ackley | 30 | MN | [-32,32] | |||
Shifted_Alpine | 30 | MN | [-10,10] |
Function | Algorithm | The worst value | Optimal value | Average optimal value | Standard deviation | Average running time/s |
---|---|---|---|---|---|---|
ABC | 1.251 4E-016 | 1.251 4E-017 | 8.710 8E-017 | 2.806 4E-017 | 0.028 7 | |
EABC | 4.107 4E-118 | 2.752 4E-121 | 6.086 2E-119 | 9.813 2E-119 | 0.021 3 | |
ABC | 1.405 4E-016 | 4.605 3E-017 | 9.196 0E-017 | 3.008 0E-017 | 0.328 0 | |
EABC | 1.237 7E-114 | 6.297 8E-118 | 9.041 5E-116 | 2.311 8E-115 | 0.331 1 | |
ABC | 1.332 5E-016 | 4.579 0E-017 | 8.331 8E-017 | 2.789 2E-017 | 0.028 9 | |
EABC | 7.500 9E-119 | 5.381 9E-122 | 7.332 3E-120 | 1.475 3E-119 | 0.032 4 | |
ABC | 9.285 9E-018 | 2.443 5E-018 | 5.656 9E-018 | 2.106 9E-018 | 0.369 1 | |
EABC | 2.637 4E-047 | 6.695 1E-079 | 8.791 4E-049 | 4.734 3E-048 | 0.384 6 | |
ABC | 3.448 9E-016 | 1.920 4E-016 | 2.497 6E-016 | 3.828 5E-017 | 0.187 4 | |
EABC | 2.402 5E-060 | 1.066 4E-062 | 2.920 6E-061 | 4.225 7E-061 | 0.160 7 | |
ABC | 1.089 4E-001 | 1.647 5E-002 | 5.440 0E-002 | 2.169 1E-002 | 0.085 0 | |
EABC | 7.262 9E+000 | 3.160 0E+000 | 5.011 3E+000 | 8.501 2E-001 | 0.093 4 | |
ABC | 1.336 9E-016 | 5.618 4E-017 | 9.417 8E-017 | 2.841 7E-017 | 0.028 6 | |
EABC | 0 | 0 | 0 | 0 | 0.039 4 | |
ABC | 2.332 1E-017 | 9.192 5E-018 | 1.481 3E-017 | 3.050 3E-018 | 0.030 2 | |
EABC | 9.110 7E-238 | 1.676 0E-244 | 6.633 0E-239 | 0 | 0.044 1 | |
ABC | 6.688 5E-002 | 2.047 8E-002 | 4.648 1E-002 | 1.180 2E-002 | 0.031 9 | |
EABC | 3.054 4E-002 | 7.575 2E-003 | 1.969 7E-002 | 5.576 0E-003 | 0.044 8 | |
ABC | 8.707 8E+000 | 2.227 4E-004 | 1.402 5E-001 | 2.357 1E-001 | 1.344 0 | |
EABC | 7.413 6E+000 | 1.077 9E-004 | 2.698 0E-001 | 1.327 4E+000 | 0.971 8 | |
ABC | 0 | 0 | 0 | 0 | 0.468 9 | |
EABC | 0 | 0 | 0 | 0 | 0.471 4 | |
ABC | 0 | 0 | 0 | 0 | 0.338 6 | |
EABC | 0 | 0 | 0 | 0 | 0.297 8 | |
ABC | 1.968 9E-010 | 0 | 2.216 3E-011 | 5.255 7E-010 | 0.257 7 | |
EABC | 1.722 4E-011 | 0 | 5.825 1E-013 | 3.090 7E-012 | 0.243 0 | |
ABC | 8.661 8E-10 | 8.661 8E-010 | 8.661 8E-010 | 6.183 4E-010 | 0.300 3 | |
EABC | 5.784 3E-012 | 8.789 7E-013 | 1.432 5E-012 | 5.457 0E-013 | 0.279 6 | |
ABC | 7.694 1E-015 | 4.141 4E-015 | 6.509 9E-014 | 1.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 1.391 0E-016 | 4.020 5E-017 | 9.379 2E-017 | 2.843 3E-017 | 0.470 9 | |
EABC | 1.570 4E-032 | 1.570 4E-032 | 1.570 4E-032 | 2.736 9E-048 | 0.418 8 | |
ABC | 1.298 0E-016 | 4.404 4E-017 | 8.927 4E-017 | 2.871 6E-017 | 0.460 7 | |
EABC | 1.349 6E-032 | 1.349 6E-032 | 1.349 7E-032 | 5.473 8E-048 | 0.422 0 | |
ABC | 7.261 7E-007 | 6.644 4E-016 | 2.453 2E-008 | 1.302 9E-007 | 0.268 6 | |
EABC | 1.075 0E-014 | 5.200 3E-049 | 9.708 1E-016 | 2.236 1E-015 | 0.242 0 | |
ABC | 1.554 5E-016 | 8.695 5E-017 | 1.224 5E-016 | 1.615 1E-17 | 1.324 7 | |
EABC | 2.625 5E-032 | 2.416 8E-032 | 1.216 6E-032 | 1.763 8E-048 | 1.112 6 | |
ABC | 0 | 0 | 0 | 0 | 1.009 8 | |
EABC | 0 | 0 | 0 | 0 | 0.756 8 | |
ABC | 3.960 9E-001 | 1.269 9E-001 | 3.095 5E-001 | 5.028 9E-002 | 0.051 3 | |
EABC | 3.455 9E-001 | 1.782 2E-001 | 2.679 8E-001 | 5.536 2E-002 | 0.064 6 | |
ABC | -7.738 9E+001 | -7.833 2E+001 | -7.830 1E+001 | 1.691 7E-001 | 0.656 7 | |
EABC | -7.833 2E+001 | -7.833 2E+001 | -7.833 2E+001 | 1.797 5E-014 | 0.629 0 | |
ABC | -2.859 8E+001 | -2.863 0E+001 | -2.861 8E+001 | 8.494 8E-003 | 0.875 7 | |
EABC | -2.857 0E+001 | -2.863 0E+001 | -2.861 8E+002 | 1.728 0E-002 | 0.843 0 | |
ABC | 8.474 8E-016 | 4.825 6E-017 | 6.426 4E-016 | 8.348 0E-017 | 0.186 3 | |
EABC | 0 | 0 | 0 | 0 | 0.113 3 | |
ABC | 0 | 0 | 0 | 0 | 0.303 1 | |
EABC | 0 | 0 | 0 | 0 | 0.285 0 | |
ABC | 1.876 8E-009 | 0 | 2.535 5E-010 | 5.525 5E-010 | 0.365 3 | |
EABC | 1.765 4E-011 | 0 | 5.876 9E-012 | 3.523 5E-012 | 0.252 3 | |
ABC | 7.694 1E-014 | 4.141 4E-015 | 6.809 5E-014 | 5.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 8.592 2E-009 | 5.443 6E-009 | 7.289 5E-009 | 7.691 0E-010 | 0.594 7 | |
EABC | 7.867 7E-015 | 5.384 5E-016 | 6.883 8E-017 | 6.553 6E-017 | 0.291 4 |
表2 两种算法的实验结果
Table 2 Experimental results of two optimization algorithms
Function | Algorithm | The worst value | Optimal value | Average optimal value | Standard deviation | Average running time/s |
---|---|---|---|---|---|---|
ABC | 1.251 4E-016 | 1.251 4E-017 | 8.710 8E-017 | 2.806 4E-017 | 0.028 7 | |
EABC | 4.107 4E-118 | 2.752 4E-121 | 6.086 2E-119 | 9.813 2E-119 | 0.021 3 | |
ABC | 1.405 4E-016 | 4.605 3E-017 | 9.196 0E-017 | 3.008 0E-017 | 0.328 0 | |
EABC | 1.237 7E-114 | 6.297 8E-118 | 9.041 5E-116 | 2.311 8E-115 | 0.331 1 | |
ABC | 1.332 5E-016 | 4.579 0E-017 | 8.331 8E-017 | 2.789 2E-017 | 0.028 9 | |
EABC | 7.500 9E-119 | 5.381 9E-122 | 7.332 3E-120 | 1.475 3E-119 | 0.032 4 | |
ABC | 9.285 9E-018 | 2.443 5E-018 | 5.656 9E-018 | 2.106 9E-018 | 0.369 1 | |
EABC | 2.637 4E-047 | 6.695 1E-079 | 8.791 4E-049 | 4.734 3E-048 | 0.384 6 | |
ABC | 3.448 9E-016 | 1.920 4E-016 | 2.497 6E-016 | 3.828 5E-017 | 0.187 4 | |
EABC | 2.402 5E-060 | 1.066 4E-062 | 2.920 6E-061 | 4.225 7E-061 | 0.160 7 | |
ABC | 1.089 4E-001 | 1.647 5E-002 | 5.440 0E-002 | 2.169 1E-002 | 0.085 0 | |
EABC | 7.262 9E+000 | 3.160 0E+000 | 5.011 3E+000 | 8.501 2E-001 | 0.093 4 | |
ABC | 1.336 9E-016 | 5.618 4E-017 | 9.417 8E-017 | 2.841 7E-017 | 0.028 6 | |
EABC | 0 | 0 | 0 | 0 | 0.039 4 | |
ABC | 2.332 1E-017 | 9.192 5E-018 | 1.481 3E-017 | 3.050 3E-018 | 0.030 2 | |
EABC | 9.110 7E-238 | 1.676 0E-244 | 6.633 0E-239 | 0 | 0.044 1 | |
ABC | 6.688 5E-002 | 2.047 8E-002 | 4.648 1E-002 | 1.180 2E-002 | 0.031 9 | |
EABC | 3.054 4E-002 | 7.575 2E-003 | 1.969 7E-002 | 5.576 0E-003 | 0.044 8 | |
ABC | 8.707 8E+000 | 2.227 4E-004 | 1.402 5E-001 | 2.357 1E-001 | 1.344 0 | |
EABC | 7.413 6E+000 | 1.077 9E-004 | 2.698 0E-001 | 1.327 4E+000 | 0.971 8 | |
ABC | 0 | 0 | 0 | 0 | 0.468 9 | |
EABC | 0 | 0 | 0 | 0 | 0.471 4 | |
ABC | 0 | 0 | 0 | 0 | 0.338 6 | |
EABC | 0 | 0 | 0 | 0 | 0.297 8 | |
ABC | 1.968 9E-010 | 0 | 2.216 3E-011 | 5.255 7E-010 | 0.257 7 | |
EABC | 1.722 4E-011 | 0 | 5.825 1E-013 | 3.090 7E-012 | 0.243 0 | |
ABC | 8.661 8E-10 | 8.661 8E-010 | 8.661 8E-010 | 6.183 4E-010 | 0.300 3 | |
EABC | 5.784 3E-012 | 8.789 7E-013 | 1.432 5E-012 | 5.457 0E-013 | 0.279 6 | |
ABC | 7.694 1E-015 | 4.141 4E-015 | 6.509 9E-014 | 1.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 1.391 0E-016 | 4.020 5E-017 | 9.379 2E-017 | 2.843 3E-017 | 0.470 9 | |
EABC | 1.570 4E-032 | 1.570 4E-032 | 1.570 4E-032 | 2.736 9E-048 | 0.418 8 | |
ABC | 1.298 0E-016 | 4.404 4E-017 | 8.927 4E-017 | 2.871 6E-017 | 0.460 7 | |
EABC | 1.349 6E-032 | 1.349 6E-032 | 1.349 7E-032 | 5.473 8E-048 | 0.422 0 | |
ABC | 7.261 7E-007 | 6.644 4E-016 | 2.453 2E-008 | 1.302 9E-007 | 0.268 6 | |
EABC | 1.075 0E-014 | 5.200 3E-049 | 9.708 1E-016 | 2.236 1E-015 | 0.242 0 | |
ABC | 1.554 5E-016 | 8.695 5E-017 | 1.224 5E-016 | 1.615 1E-17 | 1.324 7 | |
EABC | 2.625 5E-032 | 2.416 8E-032 | 1.216 6E-032 | 1.763 8E-048 | 1.112 6 | |
ABC | 0 | 0 | 0 | 0 | 1.009 8 | |
EABC | 0 | 0 | 0 | 0 | 0.756 8 | |
ABC | 3.960 9E-001 | 1.269 9E-001 | 3.095 5E-001 | 5.028 9E-002 | 0.051 3 | |
EABC | 3.455 9E-001 | 1.782 2E-001 | 2.679 8E-001 | 5.536 2E-002 | 0.064 6 | |
ABC | -7.738 9E+001 | -7.833 2E+001 | -7.830 1E+001 | 1.691 7E-001 | 0.656 7 | |
EABC | -7.833 2E+001 | -7.833 2E+001 | -7.833 2E+001 | 1.797 5E-014 | 0.629 0 | |
ABC | -2.859 8E+001 | -2.863 0E+001 | -2.861 8E+001 | 8.494 8E-003 | 0.875 7 | |
EABC | -2.857 0E+001 | -2.863 0E+001 | -2.861 8E+002 | 1.728 0E-002 | 0.843 0 | |
ABC | 8.474 8E-016 | 4.825 6E-017 | 6.426 4E-016 | 8.348 0E-017 | 0.186 3 | |
EABC | 0 | 0 | 0 | 0 | 0.113 3 | |
ABC | 0 | 0 | 0 | 0 | 0.303 1 | |
EABC | 0 | 0 | 0 | 0 | 0.285 0 | |
ABC | 1.876 8E-009 | 0 | 2.535 5E-010 | 5.525 5E-010 | 0.365 3 | |
EABC | 1.765 4E-011 | 0 | 5.876 9E-012 | 3.523 5E-012 | 0.252 3 | |
ABC | 7.694 1E-014 | 4.141 4E-015 | 6.809 5E-014 | 5.674 8E-015 | 0.226 2 | |
EABC | 3.611 5E-014 | 1.124 6E-014 | 2.048 4E-014 | 5.549 5E-015 | 0.214 4 | |
ABC | 8.592 2E-009 | 5.443 6E-009 | 7.289 5E-009 | 7.691 0E-010 | 0.594 7 | |
EABC | 7.867 7E-015 | 5.384 5E-016 | 6.883 8E-017 | 6.553 6E-017 | 0.291 4 |
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
3.351 8E-016 | 3.342 4E-017 | 0.039 3 | 3.983 8E-055 | 3.838 4E-055 | 0.043 3 | |
3.724 2E-016 | 5.172 9E-017 | 0.608 3 | 7.480 3E-052 | 1.372 4E-052 | 0.555 5 | |
3.371 8E-016 | 4.722 6E-017 | 0.039 5 | 2.029 2E-055 | 3.039 2E-055 | 0.044 2 | |
3.516 1E-017 | 1.841 0E-017 | 0.645 8 | 6.108 8E-030 | 3.129 8E-029 | 0.592 7 | |
1.463 8E-015 | 1.016 2E-016 | 0.262 4 | 1.239 7E-028 | 1.178 9E-028 | 0.211 9 | |
1.169 8E+001 | 1.635 5E+000 | 0.138 0 | 1.532 1E+001 | 1.902 4E+000 | 0.137 9 | |
3.371 6E-016 | 5.412 8E-017 | 0.039 1 | 0 | 0 | 0.024 6 | |
1.204 4E-016 | 2.229 9E-017 | 0.042 0 | 1.009 7E-113 | 1.611 8E-113 | 0.051 1 | |
1.894 1E-001 | 3.440 0E-002 | 0.046 5 | 9.453 8E-002 | 1.785 8E-002 | 0.052 0 | |
2.468 1E-001 | 4.482 5E-001 | 1.821 2 | 1.041 8E+001 | 2.458 3E+001 | 2.024 9 | |
2.486 9E-015 | 1.339 2E-014 | 1.028 5 | 6.633 1E-002 | 2.481 9E-001 | 1.024 7 | |
0 | 0 | 0.617 0 | 0 | 0 | 0.591 3 | |
2.465 4E-004 | 1.327 6E-003 | 0.477 3 | 2.465 4E-004 | 1.327 6E-003 | 0.400 8 | |
3.149 2E+001 | 5.240 2E+001 | 0.572 7 | 1.642 9E-001 | 4.817 6E-002 | 0.545 0 | |
4.724 8E-014 | 5.709 0E-015 | 0.424 6 | 3.587 9E-014 | 7.277 0E-015 | 0.412 1 | |
3.148 0E-016 | 5.657 5E-017 | 0.871 8 | 7.852 2E-033 | 1.368 5E-048 | 0.845 1 | |
3.393 1E-016 | 5.511 1E-017 | 1.008 5 | 1.349 7E-032 | 5.473 8E-048 | 0.965 0 | |
2.093 1E-005 | 2.894 1E-005 | 0.498 0 | 2.723 7E-007 | 7.691 1E-007 | 0.424 1 | |
2.640 6E+003 | 3.220 6E+002 | 2.442 7 | 2.613 0E+003 | 2.371 4E+002 | 2.176 6 | |
0 | 0 | 1.194 1 | 0 | 0 | 0.900 7 | |
4.877 7E-001 | 5.149 7E-003 | 0.065 2 | 4.702 7E-001 | 1.556 0E-002 | 0.056 7 | |
-7.833 2E+001 | 1.397 2E-014 | 1.261 8 | -7.833 2E+001 | 1.244 3E-014 | 1.176 5 | |
-5.829 6E+001 | 7.890 6E-002 | 2.814 6 | -5.849 7E+001 | 3.908 6E-002 | 1.824 7 | |
1.496 6E-015 | 1.053 5E-016 | 0.131 3 | 1.486 7E-055 | 1.169 6E-054 | 0.128 8 | |
0 | 0 | 0.594 1 | 0 | 0 | 0.500 7 | |
1.548 9E-003 | 8.350 9E-004 | 0.700 0 | 1.503 3E-003 | 8.564 2E-005 | 0.643 8 | |
1.994 8E-014 | 9.566 1E-014 | 0.498 5 | 1.906 0E-014 | 5.965 4E-015 | 0.520 9 | |
1.583 7E-005 | 1.108 5E-005 | 0.553 1 | 1.565 9E-007 | 1.261 3E-008 | 0.533 0 |
表3 ABC和EABC的实验结果 ( D = 60 )
Table 3 Experimental results of ABC and EABC ( D = 60 )
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
3.351 8E-016 | 3.342 4E-017 | 0.039 3 | 3.983 8E-055 | 3.838 4E-055 | 0.043 3 | |
3.724 2E-016 | 5.172 9E-017 | 0.608 3 | 7.480 3E-052 | 1.372 4E-052 | 0.555 5 | |
3.371 8E-016 | 4.722 6E-017 | 0.039 5 | 2.029 2E-055 | 3.039 2E-055 | 0.044 2 | |
3.516 1E-017 | 1.841 0E-017 | 0.645 8 | 6.108 8E-030 | 3.129 8E-029 | 0.592 7 | |
1.463 8E-015 | 1.016 2E-016 | 0.262 4 | 1.239 7E-028 | 1.178 9E-028 | 0.211 9 | |
1.169 8E+001 | 1.635 5E+000 | 0.138 0 | 1.532 1E+001 | 1.902 4E+000 | 0.137 9 | |
3.371 6E-016 | 5.412 8E-017 | 0.039 1 | 0 | 0 | 0.024 6 | |
1.204 4E-016 | 2.229 9E-017 | 0.042 0 | 1.009 7E-113 | 1.611 8E-113 | 0.051 1 | |
1.894 1E-001 | 3.440 0E-002 | 0.046 5 | 9.453 8E-002 | 1.785 8E-002 | 0.052 0 | |
2.468 1E-001 | 4.482 5E-001 | 1.821 2 | 1.041 8E+001 | 2.458 3E+001 | 2.024 9 | |
2.486 9E-015 | 1.339 2E-014 | 1.028 5 | 6.633 1E-002 | 2.481 9E-001 | 1.024 7 | |
0 | 0 | 0.617 0 | 0 | 0 | 0.591 3 | |
2.465 4E-004 | 1.327 6E-003 | 0.477 3 | 2.465 4E-004 | 1.327 6E-003 | 0.400 8 | |
3.149 2E+001 | 5.240 2E+001 | 0.572 7 | 1.642 9E-001 | 4.817 6E-002 | 0.545 0 | |
4.724 8E-014 | 5.709 0E-015 | 0.424 6 | 3.587 9E-014 | 7.277 0E-015 | 0.412 1 | |
3.148 0E-016 | 5.657 5E-017 | 0.871 8 | 7.852 2E-033 | 1.368 5E-048 | 0.845 1 | |
3.393 1E-016 | 5.511 1E-017 | 1.008 5 | 1.349 7E-032 | 5.473 8E-048 | 0.965 0 | |
2.093 1E-005 | 2.894 1E-005 | 0.498 0 | 2.723 7E-007 | 7.691 1E-007 | 0.424 1 | |
2.640 6E+003 | 3.220 6E+002 | 2.442 7 | 2.613 0E+003 | 2.371 4E+002 | 2.176 6 | |
0 | 0 | 1.194 1 | 0 | 0 | 0.900 7 | |
4.877 7E-001 | 5.149 7E-003 | 0.065 2 | 4.702 7E-001 | 1.556 0E-002 | 0.056 7 | |
-7.833 2E+001 | 1.397 2E-014 | 1.261 8 | -7.833 2E+001 | 1.244 3E-014 | 1.176 5 | |
-5.829 6E+001 | 7.890 6E-002 | 2.814 6 | -5.849 7E+001 | 3.908 6E-002 | 1.824 7 | |
1.496 6E-015 | 1.053 5E-016 | 0.131 3 | 1.486 7E-055 | 1.169 6E-054 | 0.128 8 | |
0 | 0 | 0.594 1 | 0 | 0 | 0.500 7 | |
1.548 9E-003 | 8.350 9E-004 | 0.700 0 | 1.503 3E-003 | 8.564 2E-005 | 0.643 8 | |
1.994 8E-014 | 9.566 1E-014 | 0.498 5 | 1.906 0E-014 | 5.965 4E-015 | 0.520 9 | |
1.583 7E-005 | 1.108 5E-005 | 0.553 1 | 1.565 9E-007 | 1.261 3E-008 | 0.533 0 |
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
1.737 2E-015 | 1.870 7E-016 | 0.056 9 | 5.109 5E-030 | 5.727 5E-030 | 0.074 1 | |
3.589 0E-012 | 7.980 5E-012 | 1.043 2 | 1.829 4E-026 | 2.198 1E-026 | 1.005 5 | |
1.576 3E-015 | 1.742 7E-016 | 0.059 7 | 2.528 0E-030 | 2.508 0E-030 | 0.070 0 | |
1.250 6E-007 | 2.671 9E-007 | 1.207 3 | 5.621 0E-022 | 1.067 4E-021 | 1.073 0 | |
4.441 6E-010 | 3.857 4E-010 | 0.682 9 | 6.158 2E-016 | 1.865 3E-016 | 0.421 0 | |
4.055 6E+001 | 2.886 1E+000 | 0.231 4 | 3.010 8E+001 | 2.252 8E+000 | 0.227 6 | |
1.694 6E-015 | 2.169 0E-016 | 0.059 4 | 0 | 0 | 0.070 7 | |
2.952 0E-016 | 5.553 5E-017 | 0.063 4 | 3.552 2E-063 | 1.550 3E-062 | 0.073 9 | |
4.675 8E-001 | 7.989 0E-002 | 0.073 0 | 2.673 4E-001 | 3.147 9E-002 | 0.081 6 | |
5.271 1E+000 | 1.696 1E+001 | 3.012 6 | 3.854 0E+001 | 4.619 5E+001 | 3.103 4 | |
1.994 4E-001 | 4.735 1E-001 | 1.581 3 | 2.695 3E-001 | 5.078 1E-001 | 1.547 7 | |
0 | 0 | 0.965 0 | 0 | 0 | 0.946 1 | |
1.134 1E-003 | 4.274 4E-003 | 0.747 3 | 5.682 8E-004 | 1.869 1E-003 | 0.701 3 | |
7.434 5E+002 | 2.809 7E+002 | 0.829 7 | 1.344 2E+002 | 9.612 8E+001 | 0.847 7 | |
7.384 4E-009 | 6.387 5E-009 | 0.618 7 | 1.329 9E-013 | 4.859 9E-014 | 0.637 9 | |
1.204 1E-015 | 1.161 5E-016 | 1.356 0 | 6.359 6E-032 | 4.714 8E-032 | 1.332 0 | |
1.759 2E-015 | 7.969 9E-016 | 1.339 6 | 2.235 9E-030 | 2.082 6E-030 | 1.321 8 | |
5.720 8E-003 | 6.563 2E-003 | 0.743 1 | 3.559 5E-004 | 1.465 4E-003 | 0.740 5 | |
4.582 2E+003 | 3.893 6E+002 | 3.553 3 | 4.687 2E+003 | 3.830 5E+002 | 3.534 3 | |
0 | 0 | 1.294 1 | 0 | 0 | 1.103 2 | |
4.996 1E-001 | 1.571 0E-004 | 0.074 5 | 4.983 0E-001 | 4.693 1E-004 | 0.090 7 | |
-7.832 3E+001 | 5.075 2E-002 | 1.972 6 | -7.833 2E+001 | 1.216 9E-014 | 1.958 3 | |
-9.697 3E+001 | 2.763 5E-001 | 2.617 6 | -9.754 4E+001 | 1.276 4E-001 | 2.604 5 | |
2.694 0E-015 | 1.513 6E-014 | 0.153 1 | 2.685 0E-015 | 1.019 5E-014 | 0.167 8 | |
0 | 0 | 1.088 7 | 0 | 0 | 1.290 5 | |
3.262 0E-003 | 1.271 6E-003 | 0.969 2 | 3.216 9E-003 | 1.586 7E-004 | 0.006 9 | |
1.995 2E-010 | 7.666 0E-010 | 0.721 2 | 1.996 3E-010 | 6.247 5E-011 | 0.722 1 | |
8.050 6E-003 | 3.397 3E-003 | 1.367 4 | 9.582 0E-004 | 9.729 6E-005 | 1.392 6 |
表4 ABC和EABC的实验结果 ( D = 100 )
Table 4 Experimental results of ABC and EABC ( D = 100 )
Function | ABC | EABC | ||||
---|---|---|---|---|---|---|
Average optimal value | Standard deviation | Average running time/s | Average optimal value | Standard deviation | Average running time/s | |
1.737 2E-015 | 1.870 7E-016 | 0.056 9 | 5.109 5E-030 | 5.727 5E-030 | 0.074 1 | |
3.589 0E-012 | 7.980 5E-012 | 1.043 2 | 1.829 4E-026 | 2.198 1E-026 | 1.005 5 | |
1.576 3E-015 | 1.742 7E-016 | 0.059 7 | 2.528 0E-030 | 2.508 0E-030 | 0.070 0 | |
1.250 6E-007 | 2.671 9E-007 | 1.207 3 | 5.621 0E-022 | 1.067 4E-021 | 1.073 0 | |
4.441 6E-010 | 3.857 4E-010 | 0.682 9 | 6.158 2E-016 | 1.865 3E-016 | 0.421 0 | |
4.055 6E+001 | 2.886 1E+000 | 0.231 4 | 3.010 8E+001 | 2.252 8E+000 | 0.227 6 | |
1.694 6E-015 | 2.169 0E-016 | 0.059 4 | 0 | 0 | 0.070 7 | |
2.952 0E-016 | 5.553 5E-017 | 0.063 4 | 3.552 2E-063 | 1.550 3E-062 | 0.073 9 | |
4.675 8E-001 | 7.989 0E-002 | 0.073 0 | 2.673 4E-001 | 3.147 9E-002 | 0.081 6 | |
5.271 1E+000 | 1.696 1E+001 | 3.012 6 | 3.854 0E+001 | 4.619 5E+001 | 3.103 4 | |
1.994 4E-001 | 4.735 1E-001 | 1.581 3 | 2.695 3E-001 | 5.078 1E-001 | 1.547 7 | |
0 | 0 | 0.965 0 | 0 | 0 | 0.946 1 | |
1.134 1E-003 | 4.274 4E-003 | 0.747 3 | 5.682 8E-004 | 1.869 1E-003 | 0.701 3 | |
7.434 5E+002 | 2.809 7E+002 | 0.829 7 | 1.344 2E+002 | 9.612 8E+001 | 0.847 7 | |
7.384 4E-009 | 6.387 5E-009 | 0.618 7 | 1.329 9E-013 | 4.859 9E-014 | 0.637 9 | |
1.204 1E-015 | 1.161 5E-016 | 1.356 0 | 6.359 6E-032 | 4.714 8E-032 | 1.332 0 | |
1.759 2E-015 | 7.969 9E-016 | 1.339 6 | 2.235 9E-030 | 2.082 6E-030 | 1.321 8 | |
5.720 8E-003 | 6.563 2E-003 | 0.743 1 | 3.559 5E-004 | 1.465 4E-003 | 0.740 5 | |
4.582 2E+003 | 3.893 6E+002 | 3.553 3 | 4.687 2E+003 | 3.830 5E+002 | 3.534 3 | |
0 | 0 | 1.294 1 | 0 | 0 | 1.103 2 | |
4.996 1E-001 | 1.571 0E-004 | 0.074 5 | 4.983 0E-001 | 4.693 1E-004 | 0.090 7 | |
-7.832 3E+001 | 5.075 2E-002 | 1.972 6 | -7.833 2E+001 | 1.216 9E-014 | 1.958 3 | |
-9.697 3E+001 | 2.763 5E-001 | 2.617 6 | -9.754 4E+001 | 1.276 4E-001 | 2.604 5 | |
2.694 0E-015 | 1.513 6E-014 | 0.153 1 | 2.685 0E-015 | 1.019 5E-014 | 0.167 8 | |
0 | 0 | 1.088 7 | 0 | 0 | 1.290 5 | |
3.262 0E-003 | 1.271 6E-003 | 0.969 2 | 3.216 9E-003 | 1.586 7E-004 | 0.006 9 | |
1.995 2E-010 | 7.666 0E-010 | 0.721 2 | 1.996 3E-010 | 6.247 5E-011 | 0.722 1 | |
8.050 6E-003 | 3.397 3E-003 | 1.367 4 | 9.582 0E-004 | 9.729 6E-005 | 1.392 6 |
Function | ABC | GABC | ABCBest1 | MABC | ABCVSS | MSSABC | EABC |
---|---|---|---|---|---|---|---|
3.88E-16±8.06E-17 | 4.34E-16±7.54E-17 | 3.76E-47±6.76E-47 | 9.43E-32±6.67E-32 | 1.53E-81±8.37E-81 | 7.92E-87±1.04E-86 | 9.78E-119±1.90E-118 | |
3.32E-16±5.77E-17 | 3.12E-16±4.45E-17 | 1.30E-40±4.33E-41 | 3.66E-28±5.96E-28 | 4.82E-82±2.63E-81 | 3.40E-84±4.78E-84 | 4.93E-116±9.77E-116 | |
3.45E-16±6.25E-17 | 4.66E-16±6.64E-17 | 6.50E-48±6.04E-48 | 2.10E-32±1.56E-32 | 3.19E-89±1.48E-88 | 1.07E-87±1.90E-87 | 2.21E-119±6.71E-119 | |
2.77E-17±9.81E-18 | 1.34E-17±8.73E-18 | 1.77E-86±7.02E-86 | 2.70E-69±5.38E-69 | 5.55E-115±3.04E-114 | 3.37E-82±1.76E-81 | 1.03E-51±5.49E-51 | |
1.09E-15±1.40E-16 | 1.03E-15±1.38E-16 | 2.44E-25±2.33E-26 | 2.40E-17±9.02E-18 | 7.89E-43±4.32E-42 | 5.65E-45±7.38E-45 | 3.64E-61±3.93E-61 | |
1.76E-01±5.48E-01 | 1.33E-01±5.01E-02 | 4.43E+00±1.43E-01 | 1.02E+01±1.49E+00 | 4.08E-02±2.20E-02 | 1.77E-01±4.62E-02 | 5.25E+00±8.86E-01 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
9.52E-16±2.29E-17 | 9.88E-16±3.54E-17 | 2.53E-95±5.53E-98 | 1.45E-67±2.28E-67 | 3.25E-154±1.78E-153 | 1.94E-176±0.00 | 3.09E-238±0.00 | |
4.15E-02±5.06E-02 | 2.42E-02±3.41E-03 | 1.26E-02±3.45E-03 | 3.71E-02±8.53E-03 | 1.81E-02±5.27E-03 | 2.54E-02±7.36E-03 | 1.05E-02±5136E-03 | |
0.93±0.16 | 0.40±0.13 | 13.30±23.10 | 0.61±0.45 | 0.38±1.54 | 3.27±12.20 | 1.42±2.44 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.22E-11±4.44E-10 | 3.46E-15±5.66E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 2.46E-04±1.32E-03 | 0.00±0.00 | |
1.17E-10±3.55E-09 | 7.57E-01±5.66E-01 | 4.22E-10±8.12E-11 | 1.21E-13±4.53E-13 | 4.85E-13±8.18E-13 | 7.41E+00±2.79E+01 | 3.86E+00±2.12E+01 | |
2.97E-14±2.32E-15 | 2.91E-14±3.36E-15 | 3.11E-14±2.21E-13 | 4.12E-14±2.17E-15 | 2.45E-14±4.00E-15 | 3.07E-14±2.71E-15 | 1.98E-14±4.55E-15 | |
5.34E-16±6.43E-17 | 4.44E-16±8.53E-17 | 1.47E-32±4.13E-48 | 1.90E-32±3.70E-33 | 1.57E-32±5.57E-48 | 1.57E-32±2.73E-48 | 1.57E-32±2.73E-48 | |
3.76E-16±8.58E-17 | 4.66E-16±7.21E-17 | 1.42E-32±5.98E-48 | 2.23E-31±1.46E-31 | 1.35E-32±5.57E-48 | 1.34E-32±5.47E-48 | 1.34E-32±5.47E-48 | |
2.71E-08±9.78E-08 | 1.47E-09±1.43E-07 | 3.34E-16±8.43E-16 | 1.58E-16±2.48E-16 | 3.66E-44±1.93E-43 | 1.49E-06±3.02E-06 | 7.44E-14±3.99E-13 | |
4.45E-14±8.76E-13 | 3.45E-15±5.63E-16 | 1.35E-31±6.68E-47 | 1.48E-31±2.30E-32 | 1.35E-31±6.68E-47 | 3.28E-31±1.76E-31 | 1.25E-32±2.30E-32 | |
0.00±0.00 | 0.00±0.00 | 4.74E-16±1.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.50E-01±5.47E-02 | 2.47E-01±6.65E-02 | 2.52E-01±6.76E-02 | 2.95E-01±3.17E-03 | 2.84E-01±5.69E-02 | 2.65E-01±4.53E-02 | 2.59E-01±4.58E-02 | |
-7.83E+01±1.56E-1 | -7.83E+01±3.50E-14 | -7.83E+01±6.45E-01 | -7.83E+01±3.17E-07 | -7.83E+01±3.02E-10 | -7.83E+01±3.06E-14 | -7.83E+01±1.51E-14 | |
-3.45E+01±4.48E-01 | -3.44E+01±4.59E-02 | -2.45E+01±3.42E-01 | -9.07E+01±5.03E-01 | -9.94E+01±8.84E-02 | -2.85E+01±7.94E-02 | -2.86E+01±1.16E-02 | |
4.34E-16±8.34E-17 | 3.91E-16±8.32E-17 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.65E-13±4.90E-12 | 3.01E-15±5.42E-15 | 6.76E-16±8.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
3.90E-14±2.35E-15 | 8.43E-14±8.80E-15 | 3.84E-14±1.43E-15 | 4.89E-14±8.12E-15 | 2.41E-14±7.90E-15 | 2.41E-14±1.78E-14 | 1.00E-16±4.02E-17 | |
1.89E-07±3.56E-07 | 6.34E-05±2.35E-05 | 5.89E-16±3.56E-16 | 9.38E-16±4.11E-16 | 7.67E-17±1.43E-16 | 5.45E-17±3.90E-16 | 1.02E-18±1.68E-14 |
表5 EABC与ABC改进算法的性能比较(Ave±Std)
Table 5 Performance comparison of EABC with improved algorithms for ABC(Ave±Std)
Function | ABC | GABC | ABCBest1 | MABC | ABCVSS | MSSABC | EABC |
---|---|---|---|---|---|---|---|
3.88E-16±8.06E-17 | 4.34E-16±7.54E-17 | 3.76E-47±6.76E-47 | 9.43E-32±6.67E-32 | 1.53E-81±8.37E-81 | 7.92E-87±1.04E-86 | 9.78E-119±1.90E-118 | |
3.32E-16±5.77E-17 | 3.12E-16±4.45E-17 | 1.30E-40±4.33E-41 | 3.66E-28±5.96E-28 | 4.82E-82±2.63E-81 | 3.40E-84±4.78E-84 | 4.93E-116±9.77E-116 | |
3.45E-16±6.25E-17 | 4.66E-16±6.64E-17 | 6.50E-48±6.04E-48 | 2.10E-32±1.56E-32 | 3.19E-89±1.48E-88 | 1.07E-87±1.90E-87 | 2.21E-119±6.71E-119 | |
2.77E-17±9.81E-18 | 1.34E-17±8.73E-18 | 1.77E-86±7.02E-86 | 2.70E-69±5.38E-69 | 5.55E-115±3.04E-114 | 3.37E-82±1.76E-81 | 1.03E-51±5.49E-51 | |
1.09E-15±1.40E-16 | 1.03E-15±1.38E-16 | 2.44E-25±2.33E-26 | 2.40E-17±9.02E-18 | 7.89E-43±4.32E-42 | 5.65E-45±7.38E-45 | 3.64E-61±3.93E-61 | |
1.76E-01±5.48E-01 | 1.33E-01±5.01E-02 | 4.43E+00±1.43E-01 | 1.02E+01±1.49E+00 | 4.08E-02±2.20E-02 | 1.77E-01±4.62E-02 | 5.25E+00±8.86E-01 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
9.52E-16±2.29E-17 | 9.88E-16±3.54E-17 | 2.53E-95±5.53E-98 | 1.45E-67±2.28E-67 | 3.25E-154±1.78E-153 | 1.94E-176±0.00 | 3.09E-238±0.00 | |
4.15E-02±5.06E-02 | 2.42E-02±3.41E-03 | 1.26E-02±3.45E-03 | 3.71E-02±8.53E-03 | 1.81E-02±5.27E-03 | 2.54E-02±7.36E-03 | 1.05E-02±5136E-03 | |
0.93±0.16 | 0.40±0.13 | 13.30±23.10 | 0.61±0.45 | 0.38±1.54 | 3.27±12.20 | 1.42±2.44 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.22E-11±4.44E-10 | 3.46E-15±5.66E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 2.46E-04±1.32E-03 | 0.00±0.00 | |
1.17E-10±3.55E-09 | 7.57E-01±5.66E-01 | 4.22E-10±8.12E-11 | 1.21E-13±4.53E-13 | 4.85E-13±8.18E-13 | 7.41E+00±2.79E+01 | 3.86E+00±2.12E+01 | |
2.97E-14±2.32E-15 | 2.91E-14±3.36E-15 | 3.11E-14±2.21E-13 | 4.12E-14±2.17E-15 | 2.45E-14±4.00E-15 | 3.07E-14±2.71E-15 | 1.98E-14±4.55E-15 | |
5.34E-16±6.43E-17 | 4.44E-16±8.53E-17 | 1.47E-32±4.13E-48 | 1.90E-32±3.70E-33 | 1.57E-32±5.57E-48 | 1.57E-32±2.73E-48 | 1.57E-32±2.73E-48 | |
3.76E-16±8.58E-17 | 4.66E-16±7.21E-17 | 1.42E-32±5.98E-48 | 2.23E-31±1.46E-31 | 1.35E-32±5.57E-48 | 1.34E-32±5.47E-48 | 1.34E-32±5.47E-48 | |
2.71E-08±9.78E-08 | 1.47E-09±1.43E-07 | 3.34E-16±8.43E-16 | 1.58E-16±2.48E-16 | 3.66E-44±1.93E-43 | 1.49E-06±3.02E-06 | 7.44E-14±3.99E-13 | |
4.45E-14±8.76E-13 | 3.45E-15±5.63E-16 | 1.35E-31±6.68E-47 | 1.48E-31±2.30E-32 | 1.35E-31±6.68E-47 | 3.28E-31±1.76E-31 | 1.25E-32±2.30E-32 | |
0.00±0.00 | 0.00±0.00 | 4.74E-16±1.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.50E-01±5.47E-02 | 2.47E-01±6.65E-02 | 2.52E-01±6.76E-02 | 2.95E-01±3.17E-03 | 2.84E-01±5.69E-02 | 2.65E-01±4.53E-02 | 2.59E-01±4.58E-02 | |
-7.83E+01±1.56E-1 | -7.83E+01±3.50E-14 | -7.83E+01±6.45E-01 | -7.83E+01±3.17E-07 | -7.83E+01±3.02E-10 | -7.83E+01±3.06E-14 | -7.83E+01±1.51E-14 | |
-3.45E+01±4.48E-01 | -3.44E+01±4.59E-02 | -2.45E+01±3.42E-01 | -9.07E+01±5.03E-01 | -9.94E+01±8.84E-02 | -2.85E+01±7.94E-02 | -2.86E+01±1.16E-02 | |
4.34E-16±8.34E-17 | 3.91E-16±8.32E-17 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
2.65E-13±4.90E-12 | 3.01E-15±5.42E-15 | 6.76E-16±8.80E-15 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | 0.00±0.00 | |
3.90E-14±2.35E-15 | 8.43E-14±8.80E-15 | 3.84E-14±1.43E-15 | 4.89E-14±8.12E-15 | 2.41E-14±7.90E-15 | 2.41E-14±1.78E-14 | 1.00E-16±4.02E-17 | |
1.89E-07±3.56E-07 | 6.34E-05±2.35E-05 | 5.89E-16±3.56E-16 | 9.38E-16±4.11E-16 | 7.67E-17±1.43E-16 | 5.45E-17±3.90E-16 | 1.02E-18±1.68E-14 |
[1] |
周蓉, 李俊, 王浩. 基于灰狼优化的反向学习粒子群算法[J]. 计算机工程与应用, 2020, 56(7): 48-56.
DOI |
ZHOU R, LI J, WANG H. Reverse learning particle swarm optimization based on grey wolf optimization[J]. Computer Engineering and Applications, 2020, 56(7): 48-56.
DOI |
|
[2] |
史春天, 曾艳阳, 侯守明. 群体智能算法在图像分割中的应用综述[J]. 计算机工程与应用, 2021, 57(8): 36-47.
DOI |
SHI C T, ZENG Y Y, HOU S M. Summary of application of swarm intelligence algorithms in image segmentation[J]. Computer Engineering and Applications, 2021, 57(8): 36-47.
DOI |
|
[3] | 傅文渊. 具有万有引力加速机理的布谷鸟搜索算法[J]. 软件学报, 2021, 32(5): 1480-1494. |
FU W Y. Cuckoo search algorithm with gravitational accele-ration mechanism[J]. Journal of Software, 2021, 32(5): 1480-1494. | |
[4] |
张孟健, 王德光, 汪敏, 等. 求解工程约束问题的新型智能优化算法及展望[J]. 计算机应用, 2022, 42(2): 534-541.
DOI |
ZHANG M J, WANG D G, WANG M, et al. Several novel intelligent optimization algorithms for solving constrained engineering problems and their prospects[J]. Journal of Computer Applications, 2022, 42(2): 534-541.
DOI |
|
[5] | KARABOGA D. An idea based on honey bee swarm for nu-merical optimization[R]. Turkey: Erciyes University, 2005. |
[6] | 刘渝根, 陈超. 基于人工蜂群算法优化支持向量机的接地网腐蚀速率预测模型[J]. 电力自动化设备, 2019, 39(5): 182-186. |
LIU Y G, CHEN C. Corrosion rate prediction model of groun-ding grid based on support vector machine optimized by artificial bee colony algorithm[J]. Electric Power Automa-tion Equipment, 2019, 39(5): 182-186. | |
[7] | 宋晓宇, 赵月, 赵明. 多策略混合搜索的人工蜂群算法[J]. 计算机工程与设计, 2020, 41(9): 2530-2537. |
SONG X Y, ZHAO Y, ZHAO M. Artificial bee colony algo-rithm based on multi-strategy hybrid search[J]. Computer Engineering and Design, 2020, 41(9): 2530-2537. | |
[8] | 孔德鹏, 常天庆, 戴文君, 等. 基于排序选择和精英引导的改进人工蜂群算法[J]. 控制与决策, 2019, 34(4): 781-786. |
KONG D P, CHANG T Q, DAI W J, et al. An improved artificial bee colony algorithm based on the ranking selec-tion and the elite guidance[J]. Journal of Control and De-cision, 2019, 34(4): 781-786. | |
[9] | 赵凤, 孔令润, 马改妮. 多目标粒子群和人工蜂群混合优化的阈值图像分割算法[J]. 计算机工程与科学, 2020, 42(2): 281-290. |
ZHAO F, KONG L Y, MA G N. A thresholding image segmentation algorithm based on multi-objective particle swarm and artificial bee colony hybrid optimization[J]. Computer Engineering and Science, 2020, 42(2): 281-290. | |
[10] | 杜振鑫, 刘广钟, 赵学华. 集成学习人工蜂群算法[J]. 西安电子科技大学学报(自然科学版), 2019, 46(2): 124-131. |
DU Z X, LIU G Z, ZHAO X H. Ensemble learning artifi-cial bee colony algorithm[J]. Journal of Xidian University (Natural Science), 2019, 46(2): 124-131. | |
[11] | 郭佳, 马朝斌, 苗萌萌, 等. 基于马尔可夫链的人工蜂群算法[J]. 北京邮电大学学报, 2020, 43(1): 54-60. |
GUO J, MA C B, MIAO M M, et al. Markov chain based artificial bee colony algorithm[J]. Journal of Beijing Uni-versity of Posts and Telecommunications, 2020, 43(1): 54-60. | |
[12] |
HUSEYIN H. A qualified search strategy with artificial bee colony algorithm for continuous optimization[J]. Arabian Journal of Science and Engineering, 2020, 45(2): 1-23.
DOI URL |
[13] |
GONG G L, RAYMOND C, DENG Q W, et al. A hybrid artificial bee colony algorithm for flexible job shop sche-duling with worker flexibility[J]. International Journal of Production Research, 2020, 58(14): 4406-4420.
DOI URL |
[14] |
ZHAO Y, LIU H, GAO K Z. An evacuation simulation me-thod based on an improved artificial bee colony algorithm and a social force model[J]. Applied Intelligence, 2021, 51(1): 100-123.
DOI URL |
[15] |
宋晓宇, 高明海, 赵明. 具有自适应搜索策略的混合人工蜂群算法[J]. 计算机工程与应用, 2019, 55(22): 53-59.
DOI |
SONG X Y, GAO M H, ZHAO M. Hybrid artificial bee colony algorithm with adaptive search strategy[J]. Compu-ter Engineering and Applications, 2019, 55(22): 53-59. | |
[16] |
ANAN B. Artificial bee colony algorithm for enhancing im-age edge detection[J]. Evolving Systems, 2019, 10(4): 679-687.
DOI URL |
[17] |
BANHARNSAKUN A, ACHALAKUL T, SIRINAOVAKUL B. The best so-far selection in artificial bee colony algorithm[J]. Applied Soft Computing, 2011, 11(2): 2888-2901.
DOI URL |
[18] | 宁爱平, 张雪英. 人工蜂群算法的收敛性分析[J]. 控制与决策, 2013, 28(10): 1554-1558. |
NING A P, ZHANG X Y. Convergence analysis of artificial bee colony algorithm[J]. Control and Decision, 2013, 28(10): 1554-1558. | |
[19] |
火久元, 王野, 胡卓娅. 人工蜂群算法的收敛性分析:数形结合[J]. 计算机科学, 2018, 45(10): 212-216.
DOI |
HUO J Y, WANG Y, HU Z Y. Convergence analysis of artificial bee colony algorithm: combination of number and shape[J]. Computer Science, 2018, 45(10): 212-216. | |
[20] | NASR E, RAGIA B. A novel variable population size arti-ficial bee colony algorithm with convergence analysis for optimal parameter tuning[J]. International Journal of Com-putational Intelligence and Applications, 2017, 16(3): 15. |
[21] |
BANSAL J C, GOPAL A, NAGAR A K. Stability analysis of artificial bee colony optimization algorithm[J]. Swarm and Evolutionary Computation, 2018, 41: 9-19.
DOI URL |
[22] |
林凯, 陈国初, 张鑫. 多交互式人工蜂群算法及其收敛性分析[J]. 计算机应用, 2017, 37(3): 760-765.
DOI |
LIN K, CHEN G C, ZHANG X. Multiple interactive arti-ficial bee colony algorithm and its convergence analysis[J]. Journal of Computer Applications, 2017, 37(3): 760-765.
DOI |
|
[23] |
KIRAN M S, HAKLI H, GUNDUZ M, et al. Artificial bee colony algorithm with variable search strategy for contin-uous optimization[J]. Information Sciences, 2015, 300(1): 140-157.
DOI URL |
[24] |
ZHU G P, KWONG S. Gbest-guided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
DOI URL |
[25] |
GAO W F, LIU S Y, HUANG L L. A global best artificial bee colony algorithm for global optimization[J]. Journal of Computational and Applied Mathematics, 2012, 236(11): 2741-2753.
DOI URL |
[26] | 王志刚, 王明刚. 基于符号函数的多搜索策略人工蜂群算法[J]. 控制与决策, 2016, 31(11): 2037-2044. |
WANG Z G, WANG M G. Multi-search strategy artificial bee colony algorithm based on symbolic function[J]. Jour-nal of Control and Decision, 2016, 31(11): 2037-2044. | |
[27] |
GAO W F, LIU S Y. A modified artificial bee colony algo-rithm[J]. Journal of Computer and Operations Research, 2014, 39(3): 687.
DOI URL |
[1] | 叶廷宇, 叶军, 王晖, 王磊. 结合人工蜂群优化的粗糙K-means聚类算法[J]. 计算机科学与探索, 2022, 16(8): 1923-1932. |
[2] | 郭佳,马朝斌,张绍博,苗萌萌. 优化的马尔可夫链人工蜂群算法[J]. 计算机科学与探索, 2020, 14(6): 985-995. |
[3] | 耿璐,李艳娟. 结合JADE和CoDE差分算子的人工蜂群算法[J]. 计算机科学与探索, 2019, 13(12): 2103-2116. |
[4] | 黄珊,高兴宝. 具有学习及十字交叉搜索的人工蜂群算法[J]. 计算机科学与探索, 2017, 11(12): 2004-2014. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||