[1] |
ZHOU Y, CHENG H, YU J X. Clustering large attributed graphs: an efficient incremental approach[C]// Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, Dec 14-17, 2010. Washington: IEEE Computer So-ciety, 2010: 689-698.
|
[2] |
PEEL L, LARREMORE D B, CLAUSET A. The ground truth about metadata and community detection in networks[J]. arXiv:1608.05878, 2016.
|
[3] |
BERGENTHUM R, LORENZ R, MAUSER S. Faster unfol-ding of general petri nets based on token flows[C]// LNCS 5062: Proceedings of the 29th International Conference on Applications and Theory of Petri Nets, Xi’an, Jun 23-27, 2008. Berlin, Heidelberg: Springer, 2008: 13-32.
|
[4] |
CHANG J, BLEI D M. Hierarchical relational models for document networks[J]. The Annals of Applied Statistics, 2010, 48(3): 269-281.
|
[5] |
XIA R K, PAN Y, DU L, et al. Robust multi-view spectral clustering via low-rank and sparse decomposition[C]// Pro-ceedings of the 28th AAAI Conference on Artificial Intel-ligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 2149-2155.
|
[6] |
YANG C, LIU Z Y, ZHAO D L, et al. Network represen-tation learning with rich text information[C]// Proceedings of the 24th International Joint Conference on Artificial In-telligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 2111-2117.
|
[7] |
BIAN Y C, LUO D S, YAN Y W, et al. Correction to: memory-based random walk for multi-query local community detec-tion[J]. Knowledge and Information Systems, 2020, 62(5): 2103-2104.
DOI
URL
|
[8] |
JIN D, ZHANG B B, SONG Y, et al. ModMRF: a modularity-based Markov random field method for community detec-tion[J]. Neurocomputing, 2020, 405: 218-228.
DOI
URL
|
[9] |
JIN D, LIU Z Y, LI W H, et al. Graph convolutional net-works meet Markov random fields: semi-supervised com-munity detection in attribute networks[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Con-ference, the 9th AAAI Symposium on Educational Advan-ces in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 152-159.
|
[10] |
WANG X, JIN D, CAO X C, et al. Semantic community identification in large attribute networks[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 265-271.
|
[11] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]// Proceedings of the 5th International Conference on Learning Representations, Tou-lon, Apr 24-26, 2017: 1-14.
|
[12] |
KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016.
|
[13] |
PAN S R, HU R Q, LONG G D, et al. Adversarially regula-rized graph autoencoder for graph embedding[C]// Procee-dings of the 27th International Joint Conference on Artifi-cial Intelligence, Stockholm, Jul 13-19, 2018: 2609-2615.
|
[14] |
WANG C, PAN S R, LONG G D, et al. MGAE: margina-lized graph autoencoder for graph clustering[C]// Procee-dings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, Nov 6-10, 2017. New York: ACM, 2017: 889-898.
|
[15] |
CHUNAEV P. Community detection in node-attributed so-cial networks: a survey[J]. Computer Science Review, 2020, 37: 100286.
DOI
URL
|
[16] |
ZHU X, GHAHRAMANI Z. Learning from labels and unla-beled data with label propagation: Tech Report CMU-CALD-02-107[R]. 2002: 1-8.
|
[17] |
YAMAGUCHI Y, HAYASHI K. When does label propa-gation fail? A view from a network generative model[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 3224-3230.
|
[18] |
JIN D, YOU X X, LI W H, et al. Incorporating network em-bedding into Markov random field for better community detection[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Sympo-sium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 160-167.
|
[19] |
CAI X, NIE F P, HUANG H. Multi-view K-means cluste-ring on big data[C]// Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 2598-2604.
|
[20] |
SHEN X B, LIU W W, TSANG I W, et al. Compressed K-means for large-scale clustering[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2527-2533.
|
[21] |
ZHOU Y, CHENG H, YU J F. Graph clustering based on structural/attribute similarities[J]. Proceedings of the VLDB Endowment, 2009, 2(1): 718-729.
DOI
URL
|
[22] |
WANG X, SONG J L, LU K, et al. Community detection in attributed networks based on heterogeneous vertex interac-tions[J]. Applied Intelligence, 2017, 47(4): 1270-1281.
DOI
URL
|
[23] |
RUAN Y Y, FUHRY D, PARTHASARATHY S. Efficient community detection in large networks using content and links[C]// Proceedings of the 22nd International World Wide Web Conference, Rio de Janeiro, May 13-17, 2013. New York: ACM, 2013: 1089-1098.
|
[24] |
DANG T, VIENNET E. Community detection based on structural and attribute similarities[C]// Proceedings of the 6th International Conference on Digital Society, Valencia, Jan 30-Feb 4, 2012: 548-553.
|
[25] |
ZHANG X T, LIU H, LI Q M, et al. Attributed graph clus-tering via adaptive graph convolution[C]// Proceedings of the 28th International Joint Conference on Artificial Intel-ligence, Macao, China, Aug 10-16, 2019: 4327-4333.
|
[26] |
VON LUXBURG U. A tutorial on spectral clustering[J]. Sta-tistics and Computing, 2007, 17(4): 395-416.
|
[27] |
AGGARWAL C C, REDDY C K. Data clustering: algori-thms and applications[M]. Boca Raton: CRC Press, 2014.
|