计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (3): 621-636.DOI: 10.3778/j.issn.1673-9418.2109014
收稿日期:
2021-09-06
修回日期:
2021-11-22
出版日期:
2022-03-01
发布日期:
2021-11-30
通讯作者:
+ E-mail: ronghuan@nuist.edu.cn作者简介:
陈共驰(2000—),男,四川自贡人,主要研究方向为自然语言处理、文本摘要等。基金资助:
CHEN Gongchi1, RONG Huan1,+(), MA Tinghuai2
Received:
2021-09-06
Revised:
2021-11-22
Online:
2022-03-01
Published:
2021-11-30
About author:
CHEN Gongchi, born in 2000. His research interests include natural language processing, text summarization, etc.Supported by:
摘要:
自动文本摘要技术旨在凝练给定文本,以篇幅较短的摘要有效反映出原文核心内容。现阶段,生成型文本摘要技术因能够以更加灵活丰富的词汇对原文进行转述,已成为文本摘要领域的研究热点。然而,现有生成型文本摘要模型在产生摘要语句时涉及对原有词汇的重组与新词的添加,易造成摘要语句不连贯、可读性低。此外,通过传统基于已标注数据的有监督训练提升摘要语句连贯性,需投入较高的数据成本,致使实际应用受限。为此,提出了一种面向连贯性强化的无真值依赖文本摘要(生成)模型(ATS_CG)。该模型在仅给定原文本的限制条件下,一方面,基于原文本的编码结果,产生语句抽取标识,刻画对原文关键信息的筛选过程,由解码器对筛选后的语句编码进行解码;另一方面,基于解码器输出的原始词汇分布,分别按“概率选择”与按“Softmax-贪婪选择”产生两类摘要文本。综合语句连贯性与语句内容两方面,构建两类摘要文本的总体收益后,利用自评判策略梯度,引导模型学习关键语句筛选以及对所筛选关键语句进行解码,生成语句连贯性高、内容质量好的摘要文本。实验表明,即便不给定任何事先标注的摘要真值,所提出模型的摘要内容指标总体上仍优于现有文本摘要方法;与此同时,ATS_CG生成的摘要文本在语句连贯性、内容重要性、信息冗余性、词汇新颖度和摘要困惑度方面亦优于现有方法。
中图分类号:
陈共驰, 荣欢, 马廷淮. 面向连贯性强化的无真值依赖文本摘要模型[J]. 计算机科学与探索, 2022, 16(3): 621-636.
CHEN Gongchi, RONG Huan, MA Tinghuai. Abstractive Text Summarization Model with Coherence Reinforcement and No Ground Truth Dependency[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 621-636.
数据集 | 文档数量 | 文档平均长度 | 摘要平均长度 | “金标准”摘要中新出现的二元组占比/% | ||||
---|---|---|---|---|---|---|---|---|
训练 | 验证 | 测试 | 单词个数 | 句子长度 | 单词个数 | 句子长度 | ||
CNN | 90 266 | 1 220 | 1 093 | 760.50 | 33.98 | 45.70 | 3.59 | 52.90 |
Daily Mail | 196 961 | 12 148 | 10 397 | 653.33 | 29.33 | 54.65 | 3.86 | 52.16 |
XSum | 204 045 | 11 332 | 11 334 | 54.70 | 19.77 | 23.26 | 1.00 | 83.31 |
表1 本文实验所采用数据集CNN/Daily Mail与XSum的相关信息
Table 1 Statistical information of CNN/Daily Mail and XSum datasets
数据集 | 文档数量 | 文档平均长度 | 摘要平均长度 | “金标准”摘要中新出现的二元组占比/% | ||||
---|---|---|---|---|---|---|---|---|
训练 | 验证 | 测试 | 单词个数 | 句子长度 | 单词个数 | 句子长度 | ||
CNN | 90 266 | 1 220 | 1 093 | 760.50 | 33.98 | 45.70 | 3.59 | 52.90 |
Daily Mail | 196 961 | 12 148 | 10 397 | 653.33 | 29.33 | 54.65 | 3.86 | 52.16 |
XSum | 204 045 | 11 332 | 11 334 | 54.70 | 19.77 | 23.26 | 1.00 | 83.31 |
组合 | 伪摘要抽取 | 模块A | 模块B (编码) | 模块B (编码+关键语句抽取) | 模块B (预训练+编码+关键语句抽取) | 模块C | 连贯性强化 (连贯性收益) | 连贯性强化 (内容收益) |
---|---|---|---|---|---|---|---|---|
1 | √ | √ | √ | |||||
2 | √ | √ | √ | √ | ||||
3 | √ | √ | √ | √ | ||||
4 | √ | √ | √ | √ | √ | |||
5 | √ | √ | √ | √ | √ | |||
6 | √ | √ | √ | √ | √ | √ |
表2 与图1对应的ATS_CG模型消融性组合
Table 2 Ablation combinations of ATS_CG corresponding to Fig.1
组合 | 伪摘要抽取 | 模块A | 模块B (编码) | 模块B (编码+关键语句抽取) | 模块B (预训练+编码+关键语句抽取) | 模块C | 连贯性强化 (连贯性收益) | 连贯性强化 (内容收益) |
---|---|---|---|---|---|---|---|---|
1 | √ | √ | √ | |||||
2 | √ | √ | √ | √ | ||||
3 | √ | √ | √ | √ | ||||
4 | √ | √ | √ | √ | √ | |||
5 | √ | √ | √ | √ | √ | |||
6 | √ | √ | √ | √ | √ | √ |
组合 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR |
---|---|---|---|---|---|
1 | 36.85 | 16.08 | 34.87 | 29.27 | 18.62 |
2 | 37.78 | 17.82 | 36.05 | 30.55 | 18.70 |
3 | 39.74 | 18.27 | 37.85 | 31.95 | 18.92 |
4 | 41.64 | 19.13 | 39.33 | 33.37 | 19.70 |
5 | 42.01 | 19.28 | 39.71 | 33.67 | 19.48 |
6 | 43.29 | 20.55 | 40.13 | 34.66 | 20.51 |
表3 消融性组合评估结果(CNN/Daily Mail数据集)
Table 3 Evaluation results of ablation combinations on CNN/Daily Mail dataset %
组合 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR |
---|---|---|---|---|---|
1 | 36.85 | 16.08 | 34.87 | 29.27 | 18.62 |
2 | 37.78 | 17.82 | 36.05 | 30.55 | 18.70 |
3 | 39.74 | 18.27 | 37.85 | 31.95 | 18.92 |
4 | 41.64 | 19.13 | 39.33 | 33.37 | 19.70 |
5 | 42.01 | 19.28 | 39.71 | 33.67 | 19.48 |
6 | 43.29 | 20.55 | 40.13 | 34.66 | 20.51 |
组合 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR |
---|---|---|---|---|---|
1 | 35.46 | 14.30 | 30.71 | 26.82 | 16.65 |
2 | 37.14 | 17.81 | 31.65 | 28.87 | 16.94 |
3 | 38.92 | 16.82 | 32.71 | 29.48 | 17.05 |
4 | 39.53 | 18.65 | 33.38 | 30.52 | 18.37 |
5 | 39.87 | 18.28 | 33.90 | 30.68 | 18.46 |
6 | 41.97 | 18.23 | 33.84 | 31.35 | 18.86 |
表4 消融性组合评估结果(XSum数据集)
Table 4 Evaluation results of ablation combinations on XSum dataset %
组合 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR |
---|---|---|---|---|---|
1 | 35.46 | 14.30 | 30.71 | 26.82 | 16.65 |
2 | 37.14 | 17.81 | 31.65 | 28.87 | 16.94 |
3 | 38.92 | 16.82 | 32.71 | 29.48 | 17.05 |
4 | 39.53 | 18.65 | 33.38 | 30.52 | 18.37 |
5 | 39.87 | 18.28 | 33.90 | 30.68 | 18.46 |
6 | 41.97 | 18.23 | 33.84 | 31.35 | 18.86 |
摘要生成方式 | 模型方法 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR | |
---|---|---|---|---|---|---|---|
抽取型 | MMS_Text | 37.57 | 15.72 | 34.42 | 29.24 | 16.97 | |
SummaRuNNer | 38.60 | 15.20 | 34.30 | 29.37 | 16.75 | ||
Refresh | 39.27 | 17.20 | 35.60 | 30.69 | 17.38 | ||
HSSAS | 41.30 | 16.80 | 36.60 | 31.57 | 18.27 | ||
生成型 | 有监督 | Pointer-Generator + Coverage | 38.53 | 16.28 | 35.38 | 30.06 | 17.70 |
Bottom-Up | 40.22 | 17.68 | 37.34 | 31.75 | 18.38 | ||
DCA | 40.69 | 18.47 | 36.92 | 32.03 | 18.55 | ||
BERTSUMEXTABS | 41.13 | 18.60 | 38.18 | 32.64 | 18.91 | ||
PEGASUSBASE | 40.79 | 17.81 | 37.93 | 32.18 | 18.63 | ||
无监督 | ATS_CG4( | 41.64 | 19.13 | 39.33 | 33.37 | 19.70 | |
ATS_CG5( | 42.01 | 19.28 | 39.71 | 33.67 | 19.48 | ||
ATS_CG6( | 43.29 | 20.55 | 40.13 | 34.66 | 20.51 |
表5 生成摘要评估结果(CNN/Daily Mail数据集)
Table 5 Evalution results of generated summarization on CNN/Daily Mail dataset %
摘要生成方式 | 模型方法 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR | |
---|---|---|---|---|---|---|---|
抽取型 | MMS_Text | 37.57 | 15.72 | 34.42 | 29.24 | 16.97 | |
SummaRuNNer | 38.60 | 15.20 | 34.30 | 29.37 | 16.75 | ||
Refresh | 39.27 | 17.20 | 35.60 | 30.69 | 17.38 | ||
HSSAS | 41.30 | 16.80 | 36.60 | 31.57 | 18.27 | ||
生成型 | 有监督 | Pointer-Generator + Coverage | 38.53 | 16.28 | 35.38 | 30.06 | 17.70 |
Bottom-Up | 40.22 | 17.68 | 37.34 | 31.75 | 18.38 | ||
DCA | 40.69 | 18.47 | 36.92 | 32.03 | 18.55 | ||
BERTSUMEXTABS | 41.13 | 18.60 | 38.18 | 32.64 | 18.91 | ||
PEGASUSBASE | 40.79 | 17.81 | 37.93 | 32.18 | 18.63 | ||
无监督 | ATS_CG4( | 41.64 | 19.13 | 39.33 | 33.37 | 19.70 | |
ATS_CG5( | 42.01 | 19.28 | 39.71 | 33.67 | 19.48 | ||
ATS_CG6( | 43.29 | 20.55 | 40.13 | 34.66 | 20.51 |
摘要生成方式 | 模型方法 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR |
---|---|---|---|---|---|---|
有监督 | Pointer-Generator + Coverage | 27.10 | 7.02 | 20.72 | 18.28 | 10.31 |
Bottom-Up | 29.02 | 8.45 | 22.96 | 20.14 | 11.09 | |
BERTSUMEXTABS | 37.81 | 15.50 | 30.27 | 27.86 | 14.14 | |
PEGASUSBASE | 38.79 | 15.58 | 30.70 | 28.36 | 14.82 | |
无监督 | ATS_CG4( | 39.53 | 18.65 | 33.38 | 30.52 | 18.37 |
ATS_CG5( | 39.87 | 18.28 | 33.90 | 30.68 | 18.46 | |
ATS_CG6( | 41.97 | 18.23 | 33.84 | 31.35 | 18.86 |
表6 生成摘要评估结果(XSum数据集)
Table 6 Evaluation results of generated summarization on XSum dataset %
摘要生成方式 | 模型方法 | ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-AVG | METEOR |
---|---|---|---|---|---|---|
有监督 | Pointer-Generator + Coverage | 27.10 | 7.02 | 20.72 | 18.28 | 10.31 |
Bottom-Up | 29.02 | 8.45 | 22.96 | 20.14 | 11.09 | |
BERTSUMEXTABS | 37.81 | 15.50 | 30.27 | 27.86 | 14.14 | |
PEGASUSBASE | 38.79 | 15.58 | 30.70 | 28.36 | 14.82 | |
无监督 | ATS_CG4( | 39.53 | 18.65 | 33.38 | 30.52 | 18.37 |
ATS_CG5( | 39.87 | 18.28 | 33.90 | 30.68 | 18.46 | |
ATS_CG6( | 41.97 | 18.23 | 33.84 | 31.35 | 18.86 |
摘要生成方式 | 模型方法 | 语句连贯性 ↑ | 内容低冗余 ↑ | 涵盖重要内容 ↑ |
---|---|---|---|---|
有监督 | Pointer-Generator + Coverage | 3.51 | 2.88 | 2.97 |
Bottom-Up | 3.45 | 3.17 | 2.85 | |
DCA | 3.23 | 3.06 | 3.08 | |
BERTSUMEXTABS | 3.43 | 3.01 | 2.85 | |
PEGASUSBASE | 3.29 | 2.95 | 3.01 | |
无监督 | ATS_CG6( | 3.92 | 3.29 | 3.13 |
表7 摘要质量人工评估结果(CNN/Daily Mail 数据集)
Table 7 Manual evaluation results of summary quality on CNN/Daily Mail dataset
摘要生成方式 | 模型方法 | 语句连贯性 ↑ | 内容低冗余 ↑ | 涵盖重要内容 ↑ |
---|---|---|---|---|
有监督 | Pointer-Generator + Coverage | 3.51 | 2.88 | 2.97 |
Bottom-Up | 3.45 | 3.17 | 2.85 | |
DCA | 3.23 | 3.06 | 3.08 | |
BERTSUMEXTABS | 3.43 | 3.01 | 2.85 | |
PEGASUSBASE | 3.29 | 2.95 | 3.01 | |
无监督 | ATS_CG6( | 3.92 | 3.29 | 3.13 |
摘要生成方式 | 模型方法 | N-1/%↑ | N-2/%↑ | N-3/%↑ | N-4/%↑ | N-5/%↑ | 摘要困惑度↓ |
---|---|---|---|---|---|---|---|
有监督 | Pointer-Generator+Coverage | 3.57 | 5.21 | 8.96 | 17.25 | 43.27 | 22.61 |
Bottom-Up | 4.28 | 8.72 | 7.54 | 20.03 | 49.37 | 24.31 | |
DCA | 4.21 | 8.96 | 9.43 | 18.96 | 51.23 | 28.37 | |
BERTSUMEXTABS | 4.82 | 16.07 | 9.27 | 22.41 | 60.01 | 18.62 | |
PEGASUSBASE | 4.42 | 17.81 | 19.77 | 27.33 | 79.12 | 17.83 | |
无监督 | ATS_CG6( | 5.27 | 19.32 | 23.42 | 39.27 | 82.31 | 15.28 |
表8 N-gram新颖度与困惑度结果(CNN/Daily Mail 数据集)
Table 8 Results of N-gram novelty and perplexity on CNN/Daily Mail dataset
摘要生成方式 | 模型方法 | N-1/%↑ | N-2/%↑ | N-3/%↑ | N-4/%↑ | N-5/%↑ | 摘要困惑度↓ |
---|---|---|---|---|---|---|---|
有监督 | Pointer-Generator+Coverage | 3.57 | 5.21 | 8.96 | 17.25 | 43.27 | 22.61 |
Bottom-Up | 4.28 | 8.72 | 7.54 | 20.03 | 49.37 | 24.31 | |
DCA | 4.21 | 8.96 | 9.43 | 18.96 | 51.23 | 28.37 | |
BERTSUMEXTABS | 4.82 | 16.07 | 9.27 | 22.41 | 60.01 | 18.62 | |
PEGASUSBASE | 4.42 | 17.81 | 19.77 | 27.33 | 79.12 | 17.83 | |
无监督 | ATS_CG6( | 5.27 | 19.32 | 23.42 | 39.27 | 82.31 | 15.28 |
[1] |
CONDORI R E L, PARDO T A S. Opinion summarization methods: comparing and extending extractive and abstractive approaches[J]. Expert Systems with Applications, 2017, 78: 124-134.
DOI URL |
[2] |
EL-KASSAS W S, SALAMA C R, RAFEA A A, et al. Automatic text summarization: a comprehensive survey[J]. Expert Systems with Applications, 2021, 165: 113679.
DOI URL |
[3] | LIN H, NG V. Abstractive summarization: a survey of the state of the art[C]// Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 9815-9822. |
[4] | 李金鹏, 张闯, 陈小军, 等. 自动文本摘要研究综述[J]. 计算机研究与发展, 2021, 58(1): 1-21. |
LI J P, ZHANG C, CHEN X J, et al. Survey on automatic text summarization[J]. Journal of Computer Research and Development, 2021, 58(1): 1-21. | |
[5] | DAI Z H, YANG Z L, YANG Y M, et al. Transformer-XL: attentive language models beyond a fixed-length context[C]// Proceedings of the 57th Conference of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 2978-2988. |
[6] | LIN C Y. ROUGE: a package for automatic evaluation of summaries[C]// Proceedings of the 2004 Workshop on Text Summarization Branches Out, Post-Conference Workshop of 42nd Annual Meeting of the ACL, Barcelona, Jul 21-26, 2004. Stroudsburg: ACL, 2004: 1-8. |
[7] | RENNIE S J, MARCHERET E, MROUEH Y, et al. Self-critical sequence training for image captioning[C]// Procee-dings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1179-1195. |
[8] | DENKOWSKI M J, LAVIE A. Meteor universal: language specific translation evaluation for any target language[C]// Proceedings of the 9th Workshop on Statistical Machine Translation, Baltimore, Jun 26-27, 2014. Stroudsburg: ACL, 2014: 376-380. |
[9] | NALLAPATI R, ZHOU B W, DOS SANTOS C N, et al. Abstractive text summarization using sequence-to-sequence RNNs and beyond[C]// Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, Berlin, Aug 11-12, 2016. Stroudsburg: ACL, 2016: 280-290. |
[10] | CHOPRA S, AULI M, RUSH A M. Abstractive sentence summarization with attentive recurrent neural networks[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 93-98. |
[11] | SEE A, LIU P J, MANNING C D. Get to the point: summarization with pointer-generator networks[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Jul 30-Aug 4, 2017. Stroudsburg: ACL, 2017: 1073-1083. |
[12] | COHAN A, DERNONCOURT F, KIM D S, et al. A discourse-aware attention model for abstractive summarization of long documents[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 615-621. |
[13] | PAULUS R, XIONG C M, SOCHER R. A deep reinforced model for abstractive summarization[C]// Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018: 1-13. |
[14] |
WILLIAMS R J, ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270-280.
DOI URL |
[15] | CELIKYILMAZ A, BOSSELUT A, HE X D, et al. Deep communicating agents for abstractive summarization[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 1662-1675. |
[16] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Proceedings of the 2017 Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008. |
[17] | LAPATA M, BARZILAY R. Automatic evaluation of text coherence: models and representations[C]// Proceedings of the 19th International Joint Conference on Artificial Intelligence, Edinburgh, Jul 30-Aug 5, 2005. San Mateo: Morgan Kaufmann, 2005: 1085-1090. |
[18] | LIN Z H, FENG M W, SANTOS C N, et al. A structured self-attentive sentence embedding[J]. arXiv:1703.03130, 2017. |
[19] | LIU Y, LAPATA M. Text summarization with pretrained encoders[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3728-3738. |
[20] | DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understan-ding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. |
[21] | ZHANG J Q, ZHAO Y, SALEH M, et al. Pegasus: pre-training with extracted gap-sentences for abstractive summarization[C]// Proceedings of the 37th International Conference on Machine Learning, Jul 12-18, 2020: 11328-11339. |
[22] | 王侃, 曹开臣, 徐畅, 等. 基于改进Transformer模型的文本摘要生成方法[J]. 电讯技术, 2019, 59(10): 1175-1181. |
WANG K, CAO K C, XU C, et al. Text abstract generation based on improved transformer model[J]. Telecommunication Engineering, 2019, 59(10): 1175-1181. | |
[23] | PETERS M, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Minneapolis: NAACL, 2018: 2227-2237. |
[24] | PILAULT J, LI R, SUBRAMANIAN S, et al. On extractive and abstractive neural document summarization with transformer language models[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 9308-9319. |
[25] | CHU E, LIU P. Meansum: a neural model for unsupervised multi-document abstractive summarization[C]// Proceedings of the 2019 International Conference on Machine Learning, Long Beach, Jun 9-15, 2019: 1223-1232. |
[26] | LI S, LEI D, QIN P, et al. Deep reinforcement learning with distributional semantic rewards for abstractive summarization[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6038-6044. |
[27] | ZHANG T, KISHORE V, WU F, et al. BERTScore: evaluating text generation with BERT[J]. arXiv:1904.09675, 2019. |
[28] | CHEN Y C, BANSAL M. Fast abstractive summarization with reinforce-selected sentence rewriting[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 675-686. |
[29] | JELINEK F, MERCER R L, BAHL L R, et al. Perplexity—a measure of the difficulty of speech recognition tasks[J]. The Journal of the Acoustical Society of America, 1977, 62(S1): S63. |
[30] | LAN Z Z, CHEN M D, GOODMAN S, et al. ALBERT: a lite bert for self-supervised learning of language representations[C]// Proceedings of the 8th International Conference on Learning Representations, Apr 26-May 1, 2020: 1-17. |
[31] | CLARK K, KHANDELWAL U, LEVY O, et al. What does BERT look at? An analysis of BERT’s attention[C]// Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, Florence, Aug 1, 2019. Stroudsburg: ACL, 2019: 276-286. |
[32] | WISEMAN S, RUSH A M. Sequence-to-sequence learning as beam-search optimization[C]// Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Stroudsburg: ACL, 2016: 1296-1306. |
[33] |
RONG H, SHENG V S, MA T H, et al. A self-play and sentiment-emphasized comment integration framework based on deep Q-learning in a crowdsourcing scenario[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(3): 1021-1037.
DOI URL |
[34] |
DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1): 19-67.
DOI URL |
[35] | LI H R, ZHU J N, MA C, et al. Read, watch, listen, and summarize: multi-modal summarization for asynchronous text, image, audio and video[J]. IEEE Transactions on Know-ledge and Data Engineering, 2018, 31(5): 996-1009. |
[36] | NALLAPATI R, ZHAI F F, ZHOU B W. Summarunner: a recurrent neural network based sequence model for extractive summarization of documents[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 3075-3081. |
[37] | NARAYAN S, COHEN S B, LAPATA M. Ranking sentences for extractive summarization with reinforcement learning[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 1747-1759. |
[38] |
AL-SABAHI K, ZHANG Z P, NADHER M. A hierarchical structured self-attentive model for extractive document summarization (HSSAS)[J]. IEEE Access, 2018, 6: 24205-24212.
DOI URL |
[39] | GEHRMANN S, DENG Y T, RUSH A M. Bottom-up abstractive summarization[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4098-4109. |
[1] | 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610. |
[2] | 韩毅, 乔林波, 李东升, 廖湘科. 知识增强型预训练语言模型综述[J]. 计算机科学与探索, 2022, 16(7): 1439-1461. |
[3] | 王扬, 陈智斌, 吴兆蕊, 高远. 强化学习求解组合最优化问题的研究综述[J]. 计算机科学与探索, 2022, 16(2): 261-279. |
[4] | 刘荆欣, 王妍, 韩笑, 夏长清, 宋宝燕. 基于Stackelberg博弈的边缘云资源定价机制研究[J]. 计算机科学与探索, 2022, 16(1): 153-162. |
[5] | 陈斌, 刘卫国. 基于SAC模型的改进遗传算法求解TSP问题[J]. 计算机科学与探索, 2021, 15(9): 1680-1693. |
[6] | 陈德光, 马金林, 马自萍, 周洁. 自然语言处理预训练技术综述[J]. 计算机科学与探索, 2021, 15(8): 1359-1389. |
[7] | 任建华, 李静, 孟祥福. 上下文感知与层级注意力网络的文档分类方法[J]. 计算机科学与探索, 2021, 15(2): 305-314. |
[8] | 严春满, 王铖. 卷积神经网络模型发展及应用[J]. 计算机科学与探索, 2021, 15(1): 27-46. |
[9] | 严丹,何军,刘红岩,杜小勇. 考虑评级信息的音乐评论文本自动生成[J]. 计算机科学与探索, 2020, 14(8): 1389-1396. |
[10] | 赵婷婷,孔乐,韩雅杰,任德华,陈亚瑞. 模型化强化学习研究综述[J]. 计算机科学与探索, 2020, 14(6): 918-927. |
[11] | 刘中强,游晓明,刘升. 启发式强化学习机制的异构双种群蚁群算法[J]. 计算机科学与探索, 2020, 14(3): 460-469. |
[12] | 杨珉,汪洁. 解决深度探索问题的贝叶斯深度强化学习算法[J]. 计算机科学与探索, 2020, 14(2): 307-316. |
[13] | 朱芮,马永涛,南亚飞,张云蕾. 融合改进强化学习的认知无线电抗干扰决策算法[J]. 计算机科学与探索, 2019, 13(4): 693-701. |
[14] | 黄磊,李寿山,王晶晶. 基于认证用户信息的微博用户类型识别方法[J]. 计算机科学与探索, 2015, 9(6): 719-725. |
[15] | 余雪丽,李 志,周昌能,崔 倩,胡 坤. 强化学习中异构反馈信号的分析与集成[J]. 计算机科学与探索, 2012, 6(4): 366-376. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||