计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (4): 855-864.DOI: 10.3778/j.issn.1673-9418.2010007
收稿日期:
2020-10-09
修回日期:
2021-01-11
出版日期:
2022-04-01
发布日期:
2021-01-25
通讯作者:
+ E-mail: zzhang@jnu.edu.cn作者简介:
余达明(1992—),男,广东珠海人,硕士研究生,主要研究方向为数据中心网络。基金资助:
Received:
2020-10-09
Revised:
2021-01-11
Online:
2022-04-01
Published:
2021-01-25
About author:
YU Daming, born in 1992, M.S. candidate. His research interest is data center networks.Supported by:
摘要:
随着互联网络数据量的急速增长和在线服务的不断增加,数据中心的网络规模不断扩大。如何构建一个能灵活扩展,具有成本效益,同时在网络进行扩展时能保持其拓扑性质不变的数据中心网络结构,已成为一个颇具挑战性的问题。笛卡尔乘积图是一种具有高可扩展性的复合图,它由基础图构造而来,通过使用笛卡尔乘积图能更灵活地构建任何规模的网络结构。基于笛卡尔乘积图,提出一种新型的数据中心网络结构,称为FSDC。FSDC使用商用
中图分类号:
余达明, 张震. FSDC:灵活的高可扩展数据中心网络结构[J]. 计算机科学与探索, 2022, 16(4): 855-864.
YU Daming, ZHANG Zhen. FSDC: Flexible and Highly Scalable Data Center Network Structure[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(4): 855-864.
符号 | 含义 |
---|---|
| 交换机的端口数 |
| FSDC结构的层数 |
| 基础图的节点数 |
| 扩展图的节点数 |
| 服务器的序号 |
表1 文中常用符号
Table 1 Denotations used in this paper
符号 | 含义 |
---|---|
| 交换机的端口数 |
| FSDC结构的层数 |
| 基础图的节点数 |
| 扩展图的节点数 |
| 服务器的序号 |
拓扑性质 | FatTree | BCube | DCell | FiConn | FSDC |
---|---|---|---|---|---|
扩展受限于服务器端口 | 否 | 是 | 是 | 否 | 否 |
扩展受限于交换机端口 | 是 | 否 | 否 | 否 | 是 |
灵活性 | 差 | 差 | 差 | 差 | 好 |
交换机数量 | | | | | |
边数量 | | | | | |
直径 | | | | | |
对分带宽 | | | | | |
表2 FSDC与其他数据中心网络结构的性质比较
Table 2 Characteristics comparison of FSDC with other data center network structures
拓扑性质 | FatTree | BCube | DCell | FiConn | FSDC |
---|---|---|---|---|---|
扩展受限于服务器端口 | 否 | 是 | 是 | 否 | 否 |
扩展受限于交换机端口 | 是 | 否 | 否 | 否 | 是 |
灵活性 | 差 | 差 | 差 | 差 | 好 |
交换机数量 | | | | | |
边数量 | | | | | |
直径 | | | | | |
对分带宽 | | | | | |
交换机端口数 | FatTree | FSDC(3,4) | FSDC(3,5) | FSDC(4,3) | FSDC(5,3) |
---|---|---|---|---|---|
8 | 128 | 1 536 | 3 000 | 864 | 1 080 |
12 | 432 | 24 576 | 75 000 | 7 776 | 9 720 |
16 | 1 024 | 393 216 | 1 875 000 | 69 984 | 87 480 |
24 | 3 456 | 100 663 296 | 1 171 875 000 | 5 668 704 | 7 085 880 |
32 | 8 192 | 25 769 803 776 | 732 421 875 000 | 459 165 024 | 573 956 280 |
表3 服务器数量的比较
Table 3 Comparison of the number of servers
交换机端口数 | FatTree | FSDC(3,4) | FSDC(3,5) | FSDC(4,3) | FSDC(5,3) |
---|---|---|---|---|---|
8 | 128 | 1 536 | 3 000 | 864 | 1 080 |
12 | 432 | 24 576 | 75 000 | 7 776 | 9 720 |
16 | 1 024 | 393 216 | 1 875 000 | 69 984 | 87 480 |
24 | 3 456 | 100 663 296 | 1 171 875 000 | 5 668 704 | 7 085 880 |
32 | 8 192 | 25 769 803 776 | 732 421 875 000 | 459 165 024 | 573 956 280 |
设备 | 型号 | 端口 | 价格/$ | 功耗/W |
---|---|---|---|---|
交换机 | T1600G-18T | 16 | 89 | 13.3 |
T1600G-28T | 24 | 128 | 20.4 | |
T1600G-52T | 48 | 259 | 32.8 | |
NIC | EXPI9402PT | 2 | 47 | 7.0 |
EXPI9404PT | 4 | 116 | 10.0 |
表4 设备价格与能耗
Table 4 Price and power consumption of devices
设备 | 型号 | 端口 | 价格/$ | 功耗/W |
---|---|---|---|---|
交换机 | T1600G-18T | 16 | 89 | 13.3 |
T1600G-28T | 24 | 128 | 20.4 | |
T1600G-52T | 48 | 259 | 32.8 | |
NIC | EXPI9402PT | 2 | 47 | 7.0 |
EXPI9404PT | 4 | 116 | 10.0 |
[1] | BARROSO L A HÖLZLE U. The datacenter as a com-puter: an introduction to the design of warehouse-scale machines[M]// Synbook Lectures on Computer Architec-ture. [S.l.]: Morgan & Claypool Publishers, 2009. |
[2] | GHEMAWAT S, GOBIOFF H, LEUNG S T. The Google file system[C]// Proceedings of the 19th ACM Symposium on Operating Systems Principles, New York, Oct 19-22, 2003. New York: ACM, 2003: 29-43. |
[3] | DEAN J, GHEMAWAT S. MapReduce: simplified data pro-cessing on large clusters[J]. Communications of the ACM, 2008, 51(1):107-113. |
[4] | CHANG F, DEAN J, GHEMAWAT S, et al. Bigtable: a dis-tributed storage system for structured data[J]. ACM Transa-ctions on Computer Systems, 2008, 26(2):1-26. |
[5] | ISARD M, BUDIU M, YU Y, et al. Dryad: distributed data-parallel programs from sequential building blocks[C]// Pro-ceedings of the 2nd ACM SIGOPS/EuroSys European Con-ference on Computer Systems, Lisbon, Mar 21-23, 2007. New York: ACM, 2007: 59-72. |
[6] | DENG Y. What is the future of disk drives, death or rebirth[J]. ACM Computing Surveys, 2011, 43(3):1-27. |
[7] | SINGH A, ONG J, AGARWAL A, et al. Jupiter rising: a de-cade of Clos topologies and centralized control in Google’s datacenter network[J]. ACM SIGCOMM Computer Communi-cation Review, 2015, 45(4):183-197. |
[8] | WU K S, XIAO J, NI L M. Rethinking the architecture de-sign of data center networks[J]. Frontiers of Computer Sci-ence, 2012, 6(5):596-603. |
[9] | BENSON T, AKELLA A, MALTZ D A. Network traffic char-acteristics of data centers in the wild[C]// Proceedings of the 10th ACM SIGCOMM Internet Measurement Conference, Melbourne, Nov 1-3, 2010. New York: ACM, 2010: 267-280. |
[10] | AVIN C, SCHMID S. Toward demand-aware networking: a theory for self-adjusting networks[J]. ACM SIGCOMM Com-puter Communication Review, 2018, 48(5):31-40. |
[11] | GREENBERG A G, HAMILTON J R, MALTZ D A, et al. The cost of a cloud: research problems in data center net-works[J]. ACM SIGCOMM Computer Communication Re-view, 2009, 39(1):68-73. |
[12] |
CHIARAVIGLIO L, D’ANDREAGIOVANNI F, LANCEL-LOTTI R, et al. An approach to balance maintenance costs and electricity consumption in cloud data centers[J]. IEEE Transactions on Sustainable Computing, 2018, 3(4):274-288.
DOI URL |
[13] | DAY K, AL-AYYOUB A E. The cross product of intercon-nection networks[J]. IEEE Transactions on Parallel and Dis-tributed Systems, 1997, 8(2):109-118. |
[14] | PERES B S, DE OLIVEIRA SOUZA A O, GOUSSEVSK-AIA O, et al. Distributed self-adjusting tree networks[C]// Proceedings of the 2019 IEEE Conference on Computer Communications, Paris, Apr 29-May 2, 2019. Piscataway: IEEE, 2019: 145-153. |
[15] |
FOERSTER K T, SCHMID S. Survey of reconfigurable data center networks: enablers, algorithms, complexity[J]. ACM SIGACT News, 2019, 50(2):62-79.
DOI URL |
[16] | LU Y F, GU H X. Flexible and scalable optical intercon-nects for data centers: trends and challenges[J]. IEEE Communi-cations Magazine, 2019, 57(10):27-33. |
[17] | AL-FARES M, LOUKISSAS A, VAHDAT A. A scalable, commodity data center network architecture[J]. ACM SIG-COMM Computer Communication Review, 2008, 38(4):63-74. |
[18] | GREENBERG A G, HAMILTON J R, JAIN N, et al. VL2: a scalable and flexible data center network[C]// Procee-dings of the ACM SIGCOMM 2009 Conference on Appli-cations, Technologies, Architectures, and Protocols for Com-puter Communications, Barcelona, Aug 16-21, 2009. New York: ACM, 2009: 51-62. |
[19] | NIRANJAN MYSORE R, PAMBORIS A, FARRINGTON N, et al. Portland: a scalable fault-tolerant layer 2 data center network fabric[C]// Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication, Barcelona, Aug 16-21, 2009. New York: ACM, 2009: 39-50. |
[20] | GUO C, WU H, TAN K, et al. Dcell: a scalable and fault-tolerant network structure for data centers[C]// Proceedings of the ACM SIGCOMM 2008 Conference on Data Commu-nication, Seattle, Aug 17-22, 2008. New York: ACM, 2008: 75-86. |
[21] | GUO C, LU G, LI D, et al. BCube: a high performance, server-centric network architecture for modular data centers[C]// Proceedings of the ACM SIGCOMM 2009 Conference on Data Communication, Barcelona, Aug 16-21, 2009. New York: ACM, 2009: 63-74. |
[22] | 朱桂明, 谢向辉, 郭得科, 等. 一种高吞吐量、高可扩展数据中心网络结构[J]. 软件学报, 2014, 25(6):1339-1351. |
ZHU G M, XIE X H, GUO D K, et al. High performance expandable data center networking structure[J]. Journal of Software, 2014, 25(6):1339-1351. | |
[23] | LI D, GUO C X, WU H T, et al. FiConn: using backup port for server interconnection in data centers[C]// Proceedings of the 28th IEEE International Conference on Computer Communications, Joint Conference of the IEEE Computer and Communications Societies, Rio de Janeiro, Apr 19-25, 2009. Piscataway: IEEE, 2009: 2276-2285. |
[24] |
ERICKSON A, STEWART I A, NAVARIDAS J, et al. The stellar transformation: from interconnection networks to data-center networks[J]. Computer Networks, 2017, 113:29-45.
DOI URL |
[25] | PARHAMI B. Introduction to parallel processing: algori-thms and architectures[M]. Berlin, Heidelberg: Springer, 2006. |
[26] | XIE J J, DENG Y H. mtCloudSim: a flow-level network si-mulator for multi-tenant cloud[C]// Proceedings of the 22nd IEEE International Conference on Parallel and Distributed Systems, Wuhan, Dec 13-16, 2016. Washington: IEEE Com-puter Society, 2016: 332-339. |
[27] | AL-FARES M, RADHAKRISHNAN S, RAGHAVAN B, et al. Hedera: dynamic flow scheduling for data center net-works[C]// Proceedings of the 7th USENIX Symposium on Networked Systems Design and Implementation, Apr 28-30, 2010. New York: ACM, 2010: 281-296. |
[28] | ALIZADEH M, GREENBERG A G, MALTZ D A, et al. Data center TCP (DCTCP)[C]// Proceedings of the ACM SIGCOMM 2010 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communica-tions, New Delhi, Aug 30-Sep 3, 2010. New York: ACM, 2010: 63-74. |
[29] | WU C, BUYYA R. Cloud data centers and cost modeling: a complete guide to planning, designing and building a cloud data center[M]. San Francisco: Morgan Kaufmann, 2015. |
[30] | ABTS D, MARTY M R, WELLS P M, et al. Energy pro-portional datacenter networks[C]// Proceedings of the 37th International Symposium on Computer Architecture, Saint-Malo, Jun 19-23, 2010. New York: ACM, 2010: 338-347. |
[31] | HELLER B, SEETHARAMAN S, MAHADEVAN P, et al. Elastictree: saving energy in data center networks[C]// Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation, San Jose, Apr 28-30, 2010. New York: ACM, 2010: 249-264. |
[1] | 李宇珺,彭智勇,吴瑕,兰海,彭煜玮. IPI:灵活高效的对象代理数据库索引结构[J]. 计算机科学与探索, 2018, 12(8): 1191-1201. |
[2] | 余雅君,刘峥,徐明伟. 数据中心网络TCP Incast问题研究[J]. 计算机科学与探索, 2017, 11(9): 1361-1378. |
[3] | 罗红兵,张晓霞 . MPI集合通信性能可扩展性研究与分析[J]. 计算机科学与探索, 2017, 11(2): 252-261. |
[4] | 程彬,李大力,徐传福,刘巍,王光学,邓小刚. 面向高阶精度CFD的JFNK算法及其并行计算[J]. 计算机科学与探索, 2017, 11(1): 61-69. |
[5] | 蔡岳平,晏尧,周丽,刘军. 基于AWGR的光电混合数据中心网络架构设计[J]. 计算机科学与探索, 2014, 8(10): 1195-1205. |
[6] | 吕 晨, 房 俊, 韩燕波. 采用元组聚类的增量式数据分区方法[J]. 计算机科学与探索, 2011, 5(8): 719-729. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 350
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 397
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||