计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (9): 2108-2120.DOI: 10.3778/j.issn.1673-9418.2105117
收稿日期:
2021-05-11
修回日期:
2021-07-15
出版日期:
2022-09-01
发布日期:
2021-07-23
通讯作者:
+ E-mail: zhangjingxiang@jiangnan.edu.cn作者简介:
朱炳宇(1997—),男,河北邯郸人,硕士研究生,主要研究方向为人工智能、模式识别、智能计算及应用。基金资助:
ZHU Bingyu, LIU Zhen, ZHANG Jingxiang()
Received:
2021-05-11
Revised:
2021-07-15
Online:
2022-09-01
Published:
2021-07-23
About author:
ZHU Bingyu, born in 1997, M.S. candidate. His research interests include artificial intelligence, pattern recognition, intelligent computation and its application.Supported by:
摘要:
新型冠状病毒肺炎(COVID-19)检测中胸部X射线(CXR图像)和电子计算机断层扫描(CT)图像是两种主要技术手段,为医生诊断提供了重要依据。针对当前卷积神经网络(CNN)在医学放射性图像中检测COVID-19的准确率不高、算法复杂、无法标记特征区域的问题,提出了一种融合梯度加权类激活映射(Grad-CAM)颜色可视化和卷积神经网络的算法(GCCV-CNN),对COVID-19阳性患者、COVID-19阴性患者、普通肺炎患者以及正常人的肺部CXR图像和CT扫描图像进行快速分类。通过定位到CXR图像和CT扫描图像中CNN进行分类的关键区域,再综合深度学习算法得到更准确的检测结果。为验证GCCV-CNN算法的有效性,分别在3个COVID-19阳性患者数据集上进行实验,并与已有算法进行比较。结果表明该算法对COVID-19阳性患者的CXR图像和CT扫描图像分类性能优于“新冠网络”(COVID-Net)算法及迁移学习新冠网络(DeTraC-Net)算法,准确率最高达98.06%,速度更快的同时还具有较好的鲁棒性。
中图分类号:
朱炳宇, 刘朕, 张景祥. 融合Grad-CAM和卷积神经网络的COVID-19检测算法[J]. 计算机科学与探索, 2022, 16(9): 2108-2120.
ZHU Bingyu, LIU Zhen, ZHANG Jingxiang. COVID-19 Detection Algorithm Combining Grad-CAM and Convolutional Neural Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2108-2120.
层名称 | 输入 | 输出 | 参数量 | |
---|---|---|---|---|
Input | 224×224×3 | 227×227×3 | N/A | |
Block1-Conv1 | 227×227×3 | 55×55×96 | 34 848 | |
Block1-ReLU1 | 55×55×96 | 55×55×96 | ||
Block1-MaxPooling1 | 55×55×96 | 27×27×96 | ||
Block2-Conv2 | 27×27×96 | 27×27×256 | 307 456 | |
Block2-ReLU2 | 27×27×256 | 27×27×96 | ||
Block2-MaxPooling2 | 27×27×96 | 13×13×96 | ||
Block3-Conv3 | 13×13×96 | 13×13×384 | 885 120 | |
Block4-Conv4 | 13×13×384 | 13×13×384 | 663 936 | |
Block5-Conv5 | 13×13×384 | 13×13×256 | 442 624 | |
Block5-MaxPooling3 | 13×13×256 | 6×6×256 | ||
Block5-Flatten | 6×6×256 | 4 096 | ||
FC6 | 4 096 | 4 096 | 37 752 832 | |
FC7 | 4 096 | 4 096 | 16 781 312 | |
FC8 | 4 096 | 1 000 | 4 096 000 | |
Output | 1 000 | 1 000 | N/A | |
Sum | 60 964 128 |
表1 AlexNet网络参数
Table 1 AlexNet network parameters
层名称 | 输入 | 输出 | 参数量 | |
---|---|---|---|---|
Input | 224×224×3 | 227×227×3 | N/A | |
Block1-Conv1 | 227×227×3 | 55×55×96 | 34 848 | |
Block1-ReLU1 | 55×55×96 | 55×55×96 | ||
Block1-MaxPooling1 | 55×55×96 | 27×27×96 | ||
Block2-Conv2 | 27×27×96 | 27×27×256 | 307 456 | |
Block2-ReLU2 | 27×27×256 | 27×27×96 | ||
Block2-MaxPooling2 | 27×27×96 | 13×13×96 | ||
Block3-Conv3 | 13×13×96 | 13×13×384 | 885 120 | |
Block4-Conv4 | 13×13×384 | 13×13×384 | 663 936 | |
Block5-Conv5 | 13×13×384 | 13×13×256 | 442 624 | |
Block5-MaxPooling3 | 13×13×256 | 6×6×256 | ||
Block5-Flatten | 6×6×256 | 4 096 | ||
FC6 | 4 096 | 4 096 | 37 752 832 | |
FC7 | 4 096 | 4 096 | 16 781 312 | |
FC8 | 4 096 | 1 000 | 4 096 000 | |
Output | 1 000 | 1 000 | N/A | |
Sum | 60 964 128 |
图3 Grad-CAM结构示意图 假设最后一层Softmax中输出目标类的概率为 y c,最后一层中的FeatureMap所有像素为 A i j,那么 y c对 A i j求偏导,即:
Fig.3 Grad-CAM structure diagram (10) α i j = ∂ y c ∂ A i j
Actual class | Predicted class | |
---|---|---|
COVID-19 | NORMAL | |
COVID-19 | TP=180 | FN=0 |
NORMAL | FP=12 | TN=168 |
表2 COVID-19 VS NORMAL混淆矩阵
Table 2 COVID-19 VS NORMAL confusion matrix
Actual class | Predicted class | |
---|---|---|
COVID-19 | NORMAL | |
COVID-19 | TP=180 | FN=0 |
NORMAL | FP=12 | TN=168 |
参数 | 数值 |
---|---|
Batch size | 144 |
Step-per-epoch | 10 |
Stride | 2 |
Input size | 224×224×3 |
Learning rate | 0.000 1 |
Dropout | 0.2 |
Epochs | 25 |
表3 COVID-19 VS NORMAL参数值
Table 3 COVID-19 VS NORMAL parameters
参数 | 数值 |
---|---|
Batch size | 144 |
Step-per-epoch | 10 |
Stride | 2 |
Input size | 224×224×3 |
Learning rate | 0.000 1 |
Dropout | 0.2 |
Epochs | 25 |
Actual class | Predicted class | |
---|---|---|
COVID-19 | PNEUMONIA | |
COVID-19 | TP=175 | FN=5 |
PNEUMONIA | FP=2 | TN=178 |
表4 COVID-19 VS PNEUMONIA混淆矩阵
Table 4 COVID-19 VS PNEUMONIA confusion matrix
Actual class | Predicted class | |
---|---|---|
COVID-19 | PNEUMONIA | |
COVID-19 | TP=175 | FN=5 |
PNEUMONIA | FP=2 | TN=178 |
参数 | 数值 |
---|---|
Batch size | 72 |
Step-per-epoch | 20 |
Stride | 2 |
Input size | 224×224×3 |
Learning rate | 0.000 1 |
Dropout | 0.2 |
Epochs | 25 |
表5 COVID-19 VS PNEUMONIA参数值
Table 5 COVID-19 VS PNEUMONIA parameters
参数 | 数值 |
---|---|
Batch size | 72 |
Step-per-epoch | 20 |
Stride | 2 |
Input size | 224×224×3 |
Learning rate | 0.000 1 |
Dropout | 0.2 |
Epochs | 25 |
Actual class | Predicted class | |
---|---|---|
COVID-19 | NOCOVID-19 | |
COVID-19 | TP=370 | FN=30 |
NOCOVID-19 | FP=66 | TN=334 |
表6 COVID-19 VS NOCOVID-19混淆矩阵
Table 6 COVID-19 VS NOCOVID-19 confusion matrix
Actual class | Predicted class | |
---|---|---|
COVID-19 | NOCOVID-19 | |
COVID-19 | TP=370 | FN=30 |
NOCOVID-19 | FP=66 | TN=334 |
参数 | 数值 |
---|---|
Batch size | 82 |
Step-per-epoch | 20 |
Stride | 2 |
Input size | 224×224×3 |
Learning rate | 0.000 1 |
Dropout | 0.2 |
Epochs | 50 |
表7 COVID-19 VS NOCOVID-19参数值
Table 7 COVID-19 VS NOCOVID-19 parameters
参数 | 数值 |
---|---|
Batch size | 82 |
Step-per-epoch | 20 |
Stride | 2 |
Input size | 224×224×3 |
Learning rate | 0.000 1 |
Dropout | 0.2 |
Epochs | 50 |
实验 | Precision/% | Recall/% | F- measure | Specificity/% | Sensitivity/% | OverallAcc/% |
---|---|---|---|---|---|---|
实验1 | 93.33 | 100.00 | 0.966 | 93.75 | 100.00 | 96.67 |
实验2 | 98.89 | 97.27 | 0.981 | 98.87 | 97.27 | 98.06 |
实验3 | 83.50 | 91.76 | 0.874 | 84.86 | 91.76 | 88.00 |
表8 三组实验分类评价参数
Table 8 Classification evaluation parameters of three groups of experiments
实验 | Precision/% | Recall/% | F- measure | Specificity/% | Sensitivity/% | OverallAcc/% |
---|---|---|---|---|---|---|
实验1 | 93.33 | 100.00 | 0.966 | 93.75 | 100.00 | 96.67 |
实验2 | 98.89 | 97.27 | 0.981 | 98.87 | 97.27 | 98.06 |
实验3 | 83.50 | 91.76 | 0.874 | 84.86 | 91.76 | 88.00 |
算法 | 数据集1 | 数据集2 | 数据集3 |
---|---|---|---|
COVID-Net算法 | 94.30 | 92.50 | 91.00 |
DeTraC-Net算法 | 92.70 | 94.10 | 87.60 |
GCCV-CNN算法 | 96.67 | 98.06 | 88.00 |
表9 Classification accuracy of three algorithms on three datasets 单位:%
Table 9
算法 | 数据集1 | 数据集2 | 数据集3 |
---|---|---|---|
COVID-Net算法 | 94.30 | 92.50 | 91.00 |
DeTraC-Net算法 | 92.70 | 94.10 | 87.60 |
GCCV-CNN算法 | 96.67 | 98.06 | 88.00 |
[1] | 邱海波, 李绪言, 杜斌, 等. 危重型新型冠状病毒肺炎的治疗思考[J]. 中华结核和呼吸杂志, 2020, 43(4): 273-277. |
QIU H B, LI X Y, DU B, et al. Thoughts on the treatment of the COVID-19[J]. Chinese Journal of Tuberculosis and Respiratory Diseases, 2020, 43(4): 273-277. | |
[2] |
HU Q, GUAN H, SUN Z, et al. Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China[J]. European Journal of Radiology, 2020, 128: 109017.
DOI URL |
[3] |
钱宝鑫, 肖志勇, 宋威. 改进的卷积神经网络在肺部图像上的分割应用[J]. 计算机科学与探索, 2020, 14(8): 1358-1367.
DOI |
QIAN B X, XIAO Z Y, SONG W. Application of improved convolutional neural network in lung image segmentation[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1358-1367. | |
[4] |
王保加, 潘海为, 谢晓芹, 等. 基于多模态特征的医学图像聚类方法[J]. 计算机科学与探索, 2018, 12(3): 411-422.
DOI |
WANG B J, PAN H W, XIE X Q, et al. Medical image clustering based on multimodal features[J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 411-422. | |
[5] | 李振昊, 高小玲, 杨小娟, 等. 新型冠状病毒核酸检测分析[J]. 检验医学与临床, 2020, 17(10): 7-9. |
LI Z H, GAO X L, YANG X J, et al. The nucleic acid detection and analysis of COVID-19[J]. Laboratory Medicine and Clinic, 2020, 17(10): 7-9. | |
[6] |
WANG S, KANG B, MA J L, et al. A deep learning algorithm using CT images to screen for corona virus disease (COVID-19)[J]. European Radiology, 2021, 31(8): 6096-6104.
DOI URL |
[7] |
SONG Y, ZHENG S J, LI L, et al. Deep learning enables accurate diagnosis of novel coronavirus (COVID-19) with CT images[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2021, 18(6): 2775-2780.
DOI URL |
[8] |
SETHY P K, SANTI K, BEHERA, et al. Detection of coronavirus disease (COVID-19) based on deep features and support vector machine[J]. International Journal of Mathematical, Engineering and Management Sciences, 2020, 5(4): 643-651.
DOI URL |
[9] |
WANG L, LIN Z Q, WONG A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J]. Scientific Reports, 2020, 10(1): 19549.
DOI URL |
[10] |
ABBAS A, ABDELSAMEA M M, GABER M M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network[J]. Applied Intelligence, 2021, 51(2): 854-864.
DOI URL |
[11] |
APOSTOLOPOULOS I D, BESSIANA T. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks[J]. Physical and Engineering Sciences in Medicine, 2020, 43: 635-640.
DOI URL |
[12] |
PANWAR H, GUPTA P K, SIDDIQUI M K, et al. Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet[J]. Chaos Solitons & Fractals, 2020, 138: 109944.
DOI URL |
[13] | KUMAR S, MISHRA S, SINGH S K. Deep transfer learning-based COVID-19 prediction using chest X-rays[J]. Physical and Engineering Sciences in Medicine, 2020, 14(1): 356-371. |
[14] |
LUJÁN-GARCÍA J E, YÁÑEZ-MÁRQUEZ C, VILLUENDAS-REY Y, et al. A transfer learning method for pneumonia classification and visualization[J]. Applied Sciences, 2020, 10(8): 2908.
DOI URL |
[15] |
TOGAÇAR M, ERGEN B, CÖMERT Z. COVID-19 detection using deep learning models to exploit social mimic optimization and structured chest X-ray images using fuzzy color and stacking approaches[J]. Computers in Biology and Medicine, 2020, 121: 103805.
DOI URL |
[16] |
OZTURK T, TALO M, YILDIRIM E A, et al. Automated detection of COVID-19 cases using deep neural networks with X-ray images[J]. Computers in Biology and Medicine, 2020, 121: 103792.
DOI URL |
[17] |
SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[J]. International Journal of Computer Vision, 2020, 128(2): 336-359.
DOI URL |
[18] |
BENGIO Y, COURVILLE A C, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828.
DOI URL |
[19] |
MAHENDRAN A, VEDALDI A. Visualizing deep convolutional neural networks using natural pre-images[J]. International Journal of Computer Vision, 2016, 120(3): 233-255.
DOI URL |
[20] |
COHEN J P, MORRISON P, LAN D, et al. COVID-19 image data collection: prospective predictions are the future[J]. Asian Pacific Journal of Tropical Medicine, 2020, 13(6): 8-12.
DOI URL |
[21] | SOARES E, ANGELOV P, BIASO S, et al. SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification[J]. Applied Intelligence, 2020, 19(1): 81-84. |
[1] | 任宁, 付岩, 吴艳霞, 梁鹏举, 韩希. 深度学习应用于目标检测中失衡问题研究综述[J]. 计算机科学与探索, 2022, 16(9): 1933-1953. |
[2] | 萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8): 1727-1741. |
[3] | 童敢, 黄立波. Winograd快速卷积相关研究综述[J]. 计算机科学与探索, 2022, 16(5): 959-971. |
[4] | 王忠民, 赵玉鹏, 郑镕林, 贺炎, 张嘉雯, 刘洋. 脑电信号情绪识别研究综述[J]. 计算机科学与探索, 2022, 16(4): 760-774. |
[5] | 马金林, 张裕, 马自萍, 毛凯绩. 轻量化神经网络卷积设计研究进展[J]. 计算机科学与探索, 2022, 16(3): 512-528. |
[6] | 蒋光峰, 胡鹏程, 叶桦, 仰燕兰. 基于重构误差的同构图分类模型[J]. 计算机科学与探索, 2022, 16(1): 185-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||