[1] |
ZHANG J, ZHENG J, WU C, et al. Variational mesh decom-position[J]. ACM Transactions on Graphics, 2012, 31(3): 1-14.
|
[2] |
LEV J, LIM J H, OUARTI N. Principal curvature of point cloud for 3D shape recognition[C]// Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 610-614.
|
[3] |
LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points[C]// Advances in Neural Information Processing Systems 31, Montreal, Dec 3-8, 2018: 820-830.
|
[4] |
QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 21-27, 2017. Washington: IEEE Computer Society, 2017: 77-85.
|
[5] |
党吉圣, 杨军. 多特征融合的三维模型识别与分割[J]. 西安电子科技大学学报, 2020, 47(4): 149-157.
|
|
DANG J S, YANG J. 3D model recognition and segmen-tation based on multi-feature fusion[J]. Journal of Xidian University, 2020, 47(4): 149-157.
|
[6] |
KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D shape segmentation with projective convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6630-6639.
|
[7] |
HU R Z, FAN L B, LIU L G. Co-segmentation of 3D shapes via subspace clustering[J]. Computer Graphics Forum, 2012, 31(5): 1703-1713.
DOI
URL
|
[8] |
LAI Y K, HU S M, MARTIN R R, et al. Fast mesh segmen-tation using random walks[C]// Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, Stony Brook, Jun 2-4, 2008. New York: ACM, 2008: 183-191.
|
[9] |
BENJAMIN W, POLK A W, VISHWANATHAN S V N, et al. Heat walk: robust salient segmentation of non-rigid shapes[J]. Computer Graphics Forum, 2011, 30(7): 2097-2106.
DOI
URL
|
[10] |
SHLAFMAN S, TAL A, KATZ S. Metamorphosis of poly-hedral surfaces using decomposition[J]. Computer Graphics Forum, 2010, 21(3): 219-228.
DOI
URL
|
[11] |
LIU R, ZHANG H. Segmentation of 3D meshes through spectral clustering[C]// Proceedings of the 12th Pacific Con-ference on Computer Graphics and Application, Seoul, Oct 6-8, 2004. Washington: IEEE Computer Society, 2004: 298-305.
|
[12] |
HUANG H, KALOGERAKIS E, CHAUDHURI S, et al. Learning local shape descriptors from part correspondences with multi-view convolutional networks[J]. ACM Transac-tions on Graphics, 2017, 37(1).
|
[13] |
杨军, 王顺, 周鹏. 基于深度体素卷积神经网络的三维模型识别分类[J]. 光学学报, 2019, 39(4): 306-316.
|
|
YANG J, WANG S, ZHOU P. Recognition and classifica-tion for three-dimensional model based on deep voxel convo-lution neural network[J]. Acta Optica Sinica, 2019, 39(4): 306-316.
|
[14] |
WANG Y, ASAFI S, KAICK O V, et al. Active co-analysis of a set of shapes[J]. ACM Transactions on Graphics, 2012, 31(6): 157.
|
[15] |
WU Z, SHOU R, WANG Y, et al. Interactive shape co-seg-mentation via label propagation[J]. Computers & Graphics, 2014, 38(2): 248-254.
DOI
URL
|
[16] |
GOLOVINSKIY A, FUNKHOUSER T. Consistent segmen-tation of 3D models[J]. Computers & Graphics, 2009, 33(3): 262-269.
DOI
URL
|
[17] |
SIDI O, KAICK O V, KLEIMAN Y, et al. Unsupervised co-segmentation of a set of shapes via descriptor space spectral clustering[J]. ACM Transactions on Graphics, 2011, 30(6).
|
[18] |
SHU Z, QI C, XIN S, et al. Unsupervised 3D shape segmen-tation and co-segmentation via deep learning[J]. Computer Aided Geometric Design, 2016, 43(3): 39-52.
DOI
URL
|
[19] |
KALOGERAKIS E, HERTZMANN A, SINGH K. Learning 3D mesh segmentation and labeling[J]. ACM Transactions on Graphics, 2010, 29(4): 102.
|
[20] |
GUO K, ZOU D, CHEN X. 3D mesh labeling via deep con-volutional neural networks[J]. ACM Transactions on Graphics, 2015, 35(1): 3.
|
[21] |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Advan-ces in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5099-5108.
|
[22] |
ZHAO Y H, BIRDAL T, DENG H W, et al. 3D point capsule networks[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1009-1018.
|
[23] |
CHEN Z Q, YIN K X, FISHER M, et al. BAE-NET: bran-ched autoencoder for shape co-segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27 - Nov 2, 2019. Piscataway: IEEE, 2019: 8489-8498.
|
[24] |
WEI J C, LIN G S, YAP K H, et al. Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4384-4393.
|
[25] |
ZHU C Y, XU K, CHAUDHURI S, et al. AdaCoSeg: adap-tive shape co-segmentation with group consistency loss[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway: IEEE, 2020: 8540-8549.
|
[26] |
WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146.
|
[27] |
YI L, KIM V G, CEYLAN D, et al. A scalable active frame-work for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 210.
|
[28] |
KLOKOV R, LEMPITSKY V. Escape from cells: deep Kd-networks for the recognition of 3D point cloud models[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 863-872.
|