计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (2): 263-278.DOI: 10.3778/j.issn.1673-9418.2207067
闫润,黄立波,郭辉,王永鑫,张鑫铖,张鸿儒
出版日期:
2023-02-01
发布日期:
2023-02-01
YAN Run, HUANG Libo, GUO Hui, WANG Yongxin, ZHANG Xincheng, ZHANG Hongru
Online:
2023-02-01
Published:
2023-02-01
摘要: 光线追踪因其渲染效果的真实性,长期以来被视为下一代主流图像渲染技术,是计算机图形学领域的热点研究方向。近年来,学术界和商业界对实时光线追踪开展了广泛研究。为促进实时光线追踪的研究,对相关文献进行归纳、分析和总结。首先阐述了光线追踪的概念、算法、加速数据结构等理论知识;介绍了三款支持光线追踪商用图形处理器(GPU),并对比了之间的差异;从光线束遍历、无栈遍历、光线重排序、多分支BVH、降噪技术、与神经网络结合的实时光线追踪这六个方法综述了光线追踪的算法优化工作,并阐明了相关具体方法的优缺点;在算法加速的基础上,对使用GPU优化加速和采用定制化设计的硬件加速进行了归纳分析;最后对文章的内容进行了总结,指出了实时光线追踪仍面临的困难,并对未来的发展方向进行了展望。可以帮助研究人员系统地了解实时光线追踪的研究现状,为后续开展相关研究提供思路。
闫润, 黄立波, 郭辉, 王永鑫, 张鑫铖, 张鸿儒. 实时光线追踪相关研究综述[J]. 计算机科学与探索, 2023, 17(2): 263-278.
YAN Run, HUANG Libo, GUO Hui, WANG Yongxin, ZHANG Xincheng, ZHANG Hongru. Review of Real-Time Ray Tracing Technique Research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(2): 263-278.
[1] BURLEY B, ADLER D, CHIANG J Y, et al. The design and evolution of Disney??s hyperion renderer[J]. ACM Transactions on Graphics, 2018, 37(3): 1-22. [2] CHRISTENSEN P, FONG J, SHADE J, et al. RenderMan: an advanced path-tracing architecture for movie rendering[J]. ACM Transactions on Graphics, 2018, 37(3): 1-21. [3] FASCIONE L, HANIKA J, LEONE M, et al. Manuka: a batch-shading architecture for spectral path tracing in movie production[J]. ACM Transactions on Graphics, 2018, 37(3): 1-18. [4] MARRS A, SHIRLEY P, WALD I. Ray tracing gems II: next generation real-time rendering with DXR, Vulkan, and OptiX[M]. California: Springer Nature, 2021. [5] HAINES E, HOFFMAN N. Real-time rendering[M]. Boca Raton: CRC Press, 2018. [6] WHITTED T. An improved illumination model for shaded display[C]//Proceedings of the 6th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, Aug 8-10, 1979. New York: ACM, 1979: 14. [7] FUJIMOTO A, TANAKA T, IWATA K J C G, et al. ARTS: accelerated ray-tracing system[J]. IEEE Computer Graphics and Applications, 1986, 6(4): 16-26. [8] NERY A S, NEDJAH N. GridRT: a massively parallel architecture for ray-tracing using uniform grids[C]//Proceedings of the 12th Euromicro Conference on Digital System Design, Architectures, Methods and Tools, Patras, Aug 27-29, 2009. Washington: IEEE Computer Society, 2009: 211-216. [9] BENTLEY J L. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18(9): 509-517. [10] CLARK J H. Hierarchical geometric models for visible surface algorithms[J]. Communications of the ACM, 1976, 19(10): 547-554. [11] HAVRAN V. Heuristic ray shooting algorithms[D]. Prague: Czech Technical University, 2000. [12] MEISTER D, OGAKI S, BENTHIN C, et al. A survey on bounding volume hierarchies for ray tracing[J]. Computer Graphics Forum, 2021, 40(2): 683-712. [13] NVIDIA. NVIDIA Ampere GA102 GPU architecture[R/OL]. [2022-05-01]. https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.1.pdf. [14] AMD. RDNA2 architecture[R/OL]. [2022-05-01]. https://www.amd.com/en/technologies/rdna-2. [15] BEETS K. Introduction to the PowerVR Photon architecture[R/OL]. [2022-05-01]. https://www.imaginationtech.com/products/gpu/graphics-architecture/powervr-photon/. [16] BURGESS J. RTX on—the NVIDIA turing GPU[J]. IEEE Micro, 2020, 40(2): 36-44. [17] SHKURKO K, YUKSEL C, KOPTA D, et al. Time interval ray tracing for motion blur[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 24(12): 3225-3238. [18] LIU E. DLSS 2.0-image reconstruction for real-time rendering with deep learning[C]//Proceedings of the GPU Technology Conference, California, Mar 23, 2020. [19] AMD. AMD FidelityFXTM super resolution[R/OL]. [2022-05-01]. https://www.amd.com/en/technologies/fidelityfx-super-resolution. [20] WALD I, SLUSALLEK P, BENTHIN C, et al. Interactive rendering with coherent ray tracing[J]. Computer Graphics Forum, 2001, 20(3): 153-165. [21] BOULOS S, EDWARDS D, LACEWELL J D, et al. Packet-based whitted and distribution ray tracing[C]//Proceedings of the Graphics Interface 2007 Conference, Montreal, May 28-30, 2007. New York: ACM, 2007: 177-184. [22] GUNTHER J, POPOV S, SEIDEL H P, et al. Realtime ray tracing on GPU with BVH-based packet traversal[C]//Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, Ulm, Sep 10-12, 2007. Piscataway: IEEE, 2007: 113-118. [23] MANSSON E, MUNKBERG J, AKENINE-MOLLER T. Deep coherent ray tracing[C]//Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, Ulm, Sep 10-12, 2007. Piscataway: IEEE, 2007: 79-85. [24] RESHETOV A, SOUPIKOV A, HURLEY J. Multi-level ray tracing algorithm[J]. ACM Transactions on Graphics, 2005, 24(3): 1176-1185. [25] OVERBECK R, RAMAMOORTHI R, MARK W R. Large ray packets for real-time whitted ray tracing[C]//Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, Los Angeles, Aug 9-10, 2008. Piscataway: IEEE, 2008: 41-48. [26] AILA T, LAINE S. Understanding the efficiency of ray traversal on GPUs[C]//Proceedings of the Conference on High Performance Graphics 2009, New Orleans, Aug 1-3, 2009. New York: ACM, 2009: 145-149. [27] BENTHIN C, WALD I, WOOP S, et al. Combining single and packet-ray tracing for arbitrary ray distributions on the Intel MIC architecture[J]. IEEE Transactions on Visualization and Computer Graphics, 2011, 18(9): 1438-1448. [28] FUETTERLING V, LOJEWSKI C, PFREUNDT F J, et al. Accelerated single ray tracing for wide vector units[C]//Proceedings of the High Performance Graphics 2017, Los Angeles, Jul 28-30, 2017. New York: ACM, 2017: 1-9. [29] SMITS B E. Efficiency issues for ray tracing[C]//Proceedings of the 2005 International Conference on Computer Graphics and Interactive Techniques, Los Angeles, Jul 31-Aug 4, 2005. New York: ACM, 2005: 6. [30] FOLEY T, SUGERMAN J. KD-tree acceleration structures for a GPU raytracer[C]//Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware 2005, Los Angeles, Jul 30-31, 2005. Aire-la-Ville: Eurographics Association, 2005: 15-22. [31] THRANE N, SIMONSEN L O. A comparison of acceleration structures for GPU assisted ray tracing[D]. Aarhus: University of Aarhus, 2005. [32] POPOV S, GüNTHER J, SEIDEL H P, et al. Stackless KD-tree traversal for high performance GPU ray tracing[J]. Computer Graphics Forum, 2007, 26(3): 415-424. [33] LAINE S. Restart trail for stackless BVH traversal[C]//Proceedings of the 2010 Conference on High Performance Gra-phics, Saarbrucken, Jun 25-27, 2010. Aire-la-Ville: Eurographics Association, 2010: 107-111. [34] HAPALA M, DAVIDOVI? T, WALD I, et al. Efficient stack-less BVH traversal for ray tracing[C]//Proceedings of the 27th Spring Conference on Computer Graphics, Vinicné, Apr 28-30, 2011. New York: ACM, 2011: 7-12. [35] BINDER N, KELLER A. Efficient stackless hierarchy traversal on GPUs with backtracking in constant time[C]//Proceedings of the High Performance Graphics 2016, Dublin, Jun 20-22, 2016. New York: ACM, 2016: 41-50. [36] VAIDYANATHAN K, WOOP S, BENTHIN C. Wide BVH traversal with a short stack[C]//Proceedings of the 2019 Conference on High Performance Graphics. Aire-la-Ville: Eurographics Association, 2019: 15-19. [37] REIS N T, COSTA V S, PEREIRA J M. Coherent ray-space hierarchy via ray hashing and sorting[C]//Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Porto, Feb 27-Mar 1, 2017: 195-202. [38] COSTA V, PEREIRA J M, JORGE J A, et al. Accelerating occlusion rendering on a GPU via ray classification[J]. International Journal of Creative Interfaces and Computer Graphics, 2015, 6(2): 1-17. [39] AILA T, KARRAS T. Architecture considerations for tracing incoherent rays[C]//Proceedings of the 2010 Conference on High Performance Graphics, Saarbrucken, Jun 25-27, 2010. Aire-la-Ville: Eurographics Association, 2010: 113-122. [40] MOON B, BYUN Y, KIM T J, et al. Cache-oblivious ray reordering[J]. ACM Transactions on Graphics, 2010, 29(3): 1-10. [41] MEISTER D, BOKSANSKY J, GUTHE M, et al. On ray reordering techniques for faster GPU ray tracing[C]//Proceedings of the 2020 Symposium on Interactive 3D Graphics and Games, San Francisco, May 5-7, 2020. New York: ACM, 2020: 1-9. [42] MICROSOFT. DirectX raytracing (DXR) functional Spec[R/OL]. [2022-05-01]. https://microsoft.github.io/DirectX-Specs/d3d/Raytracing.html. [43] NVIDIA. NVIDIA OptiX 7.2-Programming guide[R/OL]. [2022-05-01]. https://docs.nvidia.com/gameworks/content/gameworkslibrary/optix/optix_programming_guide.htm. [44] CHRISTENSEN P H, FONG J, LAUR D M, et al. Ray tracing for the movie ‘Cars’[C]//Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, Salt Lake City, Sep 18-20, 2006. Piscataway: IEEE, 2006: 1-6. [45] WALD I, BENTHIN C, BOULOS S J I. Getting rid of packets-efficient SIMD single-ray traversal using multi-branching BVHs[C]//Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, Los Angeles, Aug 9-10, 2008. Piscataway: IEEE, 2008: 49-57. [46] ERNST M, GREINER G. Multi bounding volume hierarchies[C]//Proceedings of the 2008 IEEE Symposium on Interactive Ray Tracing, Los Angeles, Aug 9-10, 2008. Piscataway: IEEE, 2008: 35-40. [47] GUTHE M. Latency considerations of depth-first GPU ray tracing[C]//Proceedings of the 35th Annual Conference of the European Association for Computer Graphics, Strasbourg, Apr 7-11, 2014. Aire-la-Ville: Eurographics Association, 2014: 53-56. [48] YLITIE H, KARRAS T, LAINE S. Efficient incoherent ray traversal on GPUs through compressed wide BVHs[C]//Proceedings of the High Performance Graphics 2017, Los Angeles, Jul 28-30, 2017. New York: ACM, 2017: 1-13. [49] BENTHIN C, WALD I, WOOP S, et al. Compressed-leaf bounding volume hierarchies[C]//Proceedings of the High-Performance Graphics 2018, Vancouver, Aug 10-12, 2018. New York: ACM, 2018: 1-4. [50] LIER A, STAMMINGER M, KAI S. CPU-style simd ray traversal on GPUs[C]//Proceedings of the High Performance Graphics 2018, Vancouver, 2018. New York: ACM, 2018: 1-4. [51] MCGUIRE M, LUEBKE D. Hardware-accelerated global illumination by image space photon mapping[C]//Proceedings of the High Performance Graphics 2009, New Orleans, Aug 1-3, 2009. New York: ACM: 77-89. [52] PARK S, BAEK N. A shader-based ray tracing engine[J]. Applied Sciences, 2021, 11(7): 3264. [53] DAMMERTZ H, SEWTZ D, HANIKA J, et al. Edge-avoiding A-trous wavelet transform for fast global illumination filtering[C]//Proceedings of the High Performance Graphics 2010, Saarbrucken, Jun 25-27, 2010. New York: ACM, 2010: 67-75. [54] SCHIED C, KAPLANYAN A, WYMAN C, et al. Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination[C]//Proceedings of the High Performance Graphics 2017, Los Angeles, Jul 28-30, 2017. New York: ACM, 2017: 1-12. [55] MARA M, MCGUIRE M, BITTERLI B, et al. An efficient denoising algorithm for global illumination[C]//Proceedings of the High Performance Graphics 2017, Los Angeles, Jul 28-30, 2017. New York: ACM, 2017: 3105762-3105774. [56] ROUSSELLE F, KNAUS C, ZWICKER M. Adaptive rendering with non-local means filtering[J]. ACM Transactions on Graphics, 2012, 31(6): 1-11. [57] KALANTARI N K, BAKO S, SEN P. A machine learning approach for filtering Monte Carlo noise[J]. ACM Transactions on Graphics, 2015, 34(4): 122. [58] VOGELS T, ROUSSELLE F, MCWILLIAMS B, et al. Denoising with kernel prediction and asymmetric loss functions[J]. ACM Transactions on Graphics, 2018, 37(4): 1-15. [59] XU B, ZHANG J, WANG R, et al. Adversarial Monte Carlo denoising with conditioned auxiliary feature modulation[J]. ACM Transactions on Graphics, 2019, 38(6): 224. [60] YANG L, LIU S, SALVI M. A survey of temporal antialiasing techniques[J]. Computer Graphics Forum, 2020, 39(2): 607-621. [61] SCHIED C, PETERS C, DACHSBACHER C. Gradient estimation for real-time adaptive temporal filtering[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2018, 1(2): 1-16. [62] KOSKELA M, IMMONEN K, M?KITALO M, et al. Blockwise multi-order feature regression for real-time path-tracing reconstruction[J]. ACM Transactions on Graphics, 2019, 38(5): 1-14. [63] NVIDIA. RTX global illumination (RTXGI)[R/OL]. [2022-05-01]. https: //developer.nvidia.com/rtx/ray-tracing/rtxgi. [64] MAJERCIK Z, MARRS A, SPJUT J, et al. Scaling probe-based real-time dynamic global illumination for production[J]. arXiv:2009.10796, 2020. [65] CHAITANYA C R A, KAPLANYAN A S, SCHIED C, et al. Interactive reconstruction of Monte Carlo image sequences using a recurrent denoising autoencoder[J]. ACM Transactions on Graphics, 2017, 36(4): 1-12. [66] HOFMANN N, HASSELGREN J, CLARBERG P, et al. Interactive path tracing and reconstruction of sparse volumes[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2021, 4(1): 1-19. [67] KETTUNEN M, H?RK?NEN E, LEHTINEN J. Deep convolutional reconstruction for gradient-domain rendering[J]. ACM Transactions on Graphics, 2019, 38(4): 1-12. [68] VERBIN D, HEDMAN P, MILDENHALL B, et al. Ref-NeRF: structured view-dependent appearance for neural radiance fields[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 5481-5490. [69] DAHM K, KELLER A. Learning light transport the reinforced way[C]//Proceedings of the ACM SIGGRAPH 2017 Talks, Los Angeles, Jul 30-Aug 3, 2017. New York: ACM, 2017: 1-2. [70] DONG C, LOY C C, HE K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2): 295-307. [71] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2017. Washington: IEEE Computer Society, 2017: 4681-4690. [72] XIAO L, NOURI S, CHAPMAN M, et al. Neural supersampling for real-time rendering[J]. ACM Transactions on Graphics, 2020, 39(4): 142. [73] THOMAS M M, LIKTOR G, PETERS C, et al. Temporally stable real-time joint neural denoising and supersampling[J]. Proceedings of the ACM on Computer Graphics and Interactive Techniques, 2022, 5(3): 1-22. [74] CHOWDHURY H, KAWIAK R, DE BOER R, et al. Intel XeSS—an AI based super sampling solution for real-time rendering[C]//Proceedings of the Game Developers Conference 2022, San Francisco, Mar 21-25, 2022. [75] CARR N A, HALL J D, HART J C. The ray engine[C]//Proceedings of the 2002 ACM SIGGRAPH/EUROGRAPHICS on Graphics Hardware, Saarbrucken, Sep 1-2, 2002. New York: ACM, 2002: 37-46. [76] PURCELL T J, BUCK I, MARK W R, et al. Ray tracing on programmable graphics hardware[C]//Proceedings of the ACM SIGGRAPH 2005 Courses, Los Angeles, Jul 31-Aug 4, 2005. New York: ACM, 2005. [77] AILA T, LAINE S, KARRAS T. Understanding the efficiency of ray traversal on GPUs—Kepler and Fermi addendum: NVR-2012-002[R]. City of Santa Clara, 2012. [78] HANIKA J, KELLER A. Towards hardware ray tracing using fixed point arithmetic[C]//Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, Ulm, Sep 10-12, 2007. Piscataway: IEEE, 2007: 119-128. [79] HEINLY J, RECKER S, BENSEMA K, et al. Integer ray tracing[J]. Journal of Graphics, GPU, and Game Tools, 2009, 14(4): 31-56. [80] KEELY S. Reduced precision for hardware ray tracing in GPUs[C]//Proceedings of the High Performance Graphics 2014, Goslar, Jun 23-25, 2014. New York: ACM, 2014: 29-40. [81] VAIDYANATHAN K, AKENINE-M?LLER T, SALVI M. Watertight ray traversal with reduced precision[C]//Proceedings of the High Performance Graphics 2016, Goslar, Jun 20-22, 2016. New York: ACM, 2016: 33-40. [82] LIKTOR G, VAIDYANATHAN K. Bandwidth-efficient BVH layout for incremental hardware traversal[C]//Proceedings of the High Performance Graphics 2016. New York: ACM, 2016: 51-61. [83] Lü Y S, HUANG L B, SHEN L, et al. Unleashing the power of GPU for physically-based rendering via dynamic ray shuffling[C]//Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, Massachusetts, Oct 14-18, 2017. New York: ACM, 2017: 560-573. [84] BAKHODA A, YUAN G L, FUNG W W, et al. Analyzing CUDA workloads using a detailed GPU simulator[C]//Proceedings of the 2009 IEEE International Symposium on Performance Analysis of Systems and Software, Boston, Apr 26-28, 2009. Piscataway: IEEE, 2009: 163-174. [85] LIU L, CHANG W, DEMOULLIN F, et al. Intersection prediction for accelerated GPU ray tracing[C]//Proceedings of the MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, Greece, Oct 18-22, 2021. New York: ACM, 2021: 709-723. [86] NI Y, DENG Y, LI Z, et al. Agglomerative memory and thread scheduling for high-performance ray-tracing on GPUs[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2021, 41(2): 334-345. [87] HALL D. The AR350: today’s ray trace rendering processor[C]//Proceedings of the 2001 Eurographics/SIGGRAPH Workshop on Graphics Hardware-Hot 3D Session, Los Angeles, 2001: 13-19. [88] KOBAYASHI H, SUZUKI K, SANO K, et al. Interactive ray-tracing on the 3DCGiRAM architecture[C]//Proceedings of the ACM/IEEE MICRO-35, Istanbul, Nov 18-22, 2002. New York: ACM, 2002. [89] FENDER J, ROSE J. A high-speed ray tracing engine built on a field-programmable system[C]//Proceedings of the 2003 IEEE International Conference on Field-Programmable Technology, Tokyo, Dec 15-17, 2003. Piscataway: IEEE, 2004: 188-195. [90] WOOP S, SCHMITTLER J, SLUSALLEK P. RPU: a programmable ray processing unit for realtime ray tracing[J]. ACM Transactions on Graphics, 2005, 24(3): 434-444. [91] SCHMITTLER J. SaarCOR: a hardware architecture for real-time ray tracing[C]//Proceedings of the Graphics Hardware 2006, Goslar, Sep 1-2, 2006. New York: ACM, 2006: 27-36. [92] SCHMITTLER J, WOOP S, WAGNER D, et al. Realtime ray tracing of dynamic scenes on an FPGA chip[C]//Proceedings of the Graphics Hardware 2004, Grenoble, Aug 29-30, 2004. New York: ACM, 2004: 95-106. [93] WOOP S, BRUNVAND E, SLUSALLEK P. Estimating performance of a ray-tracing ASIC design[C]//Proceedings of the 2006 IEEE Symposium on Interactive Ray Tracing, Salt Lake City, Sep 18-20, 2006. Piscataway: IEEE, 2006: 7-14. [94] WOOP S. A programmable hardware architecture for realtime ray tracing of coherent dynamic scenes[D]. Saarbrücken: Sarrland University, 2007. [95] NAH J H, PARK J S, PARK C, et al. T&I engine: traversal and intersection engine for hardware accelerated ray tracing[C]//Proceedings of the 2011 SIGGRAPH Asia Conference, Hong Kong, Dec 12-15, 2011. New York: ACM, 2011: 1-10. [96] NAH J H, KWON H J, KIM D S, et al. RayCore: a ray-tracing hardware architecture for mobile devices[J]. ACM Transactions on Graphics, 2014, 33(5): 1-15. [97] LEE W J, SHIN Y, LEE J, et al. SGRT: a mobile GPU architecture for real-time ray tracing[C]//Proceedings of the 5th High-Performance Graphics Conference, Anaheim, Jul 19-21, 2013. New York: ACM, 2013: 109-119. [98] LEE W J, SHIN Y, LEE J, et al. Real-time ray tracing on future mobile computing platform[C]//Proceedings of the SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications, Hong Kong, China, Nov 19-22, 2013. New York: ACM, 2013: 1-5. [99] NAH J H, KIM J W, PARK J, et al. HART: a hybrid architecture for ray tracing animated scenes[J]. IEEE Transactions on Visualization and Computer Graphics, 2014, 21(3): 389-401. [100] KIM H Y, KIM Y J, KIM L S. MRTP: mobile ray tracing processor with reconfigurable stream multi-processors for high datapath utilization[J]. IEEE Journal of Solid-State Circuits, 2011, 47(2): 518-535. [101] KIM H Y, KIM Y J, OH J H, et al. A reconfigurable SIMT processor for mobile ray tracing with contention reduction in shared memory[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 60(4): 938-950. [102] YAN R, HUANG L, GUO H, et al. RT engine: an efficient hardware architecture for ray tracing[J]. Applied Sciences, 2022, 12(19): 9599. [103] SPJUT J, KENSLER A, KOPTA D, et al. TRaX: a multicore hardware architecture for real-time ray tracing[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(12): 1802-1815. [104] KOPTA D, SPJUT J, BRUNVAND E, et al. Efficient MIMD architectures for high-performance ray tracing[C]//Proceedings of the 2010 IEEE International Conference on Computer Design, Amsterdam, Oct 3-6, 2010. Piscataway: IEEE, 2010: 9-16. [105] KOPTA D, SHKURKO K, SPJUT J, et al. Memory considerations for low energy ray tracing[J]. Computer Graphics Forum, 2015, 34(1): 47-59. [106] KOPTA D, SHKURKO K, SPJUT J, et al. An energy and bandwidth efficient ray tracing architecture[C]//Proceedings of the High Performance Graphics 2013, Anaheim, Jul 19-21, 2013. New York: ACM, 2013. [107] SHKURKO K, GRANT T, KOPTA D, et al. Dual streaming for hardware-accelerated ray tracing[C]//Proceedings of the High Performance Graphics 2017. New York: ACM, 2017: 1-11. [108] VASIOU E, SHKURKO K, BRUNVAND E, et al. Mach-RT: a many chip architecture for ray tracing[C]//Proceedings of the High Performance Graphics 2019, Strasbourg, Jul 16-18, 2019. New York: ACM, 2019: 1-6. [109] VASIOU E, SHKURKO K, BRUNVAND E, et al. Mach-RT: a many chip architecture for high performance ray tracing[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28(3): 1585-1596. |
[1] | 肖汉, 孙陆鹏, 李彩林, 周清雷. 面向GPU的直方图统计图像增强并行算法[J]. 计算机科学与探索, 2022, 16(10): 2273-2285. |
[2] | 贾伟乐,曹宗雁,王龙,迟学斌,高卫国,汪林望. Ultra-Mat:基于平面波的第一原理异构计算软件[J]. 计算机科学与探索, 2014, 8(7): 769-777. |
[3] | 韦向远,杨辉华,谢谱模. 基于CUDA的并行布谷鸟搜索算法设计与实现[J]. 计算机科学与探索, 2014, 8(6): 665-673. |
[4] | 覃子姗,顾璠,秦晓科,陈铭松. 基于GPU平台的有效字典压缩与解压缩技术[J]. 计算机科学与探索, 2014, 8(5): 525-536. |
[5] | 文敏华,林新华,Simon Chong Wee See. 动态网格的DSMC方法在GPU上的并行[J]. 计算机科学与探索, 2013, 7(5): 472-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||