[1] 刘治平. 基因调控网络推断研究进展[J]. 运筹学学报, 2021, 25(3): 173-182.
LIU Z P. Some advances in gene regulatory network in-ference[J]. Operations Research Transactions, 2021, 25(3): 173-182.
[2] 王沛, 吕金虎. 基因调控网络的控制: 机遇与挑战[J]. 自动化学报, 2013, 39(12): 1969-1979.
WANG P, LV J H. Control of genetic regulatory networks: opportunities and challenges[J]. Acta Automatica Sinica, 2013, 39(12): 1969-1979.
[3] WANG Y, JOSHI T, ZHANG X S, et al. Inferring gene re-gulatory networks from multiple microarray datasets[J]. Bioinformatics, 2006, 22(19): 2413-2420.
[4] SHMULEVICH I, DOUGHERTY E R, KIM S, et al. Proba-bilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks[J]. Bioinformatics, 2002, 18(2): 261-274.
[5] TIMMERMANN T, GONZáLEZ B, RUZ G A. Reconstruc-tion of a gene regulatory network of the induced systemic resistance defense response in Arabidopsis using Boolean networks[J]. BMC bioinformatics, 2020, 21(1): 1-16.
[6] CANTONE I, MARUCCI L, IORIO F, et al. A yeast syn-thetic network for in vivo assessment of reverse-engineering and modeling approaches[J]. Cell, 2009, 137(1): 172-181.
[7] PIRGAZI J, KHANTEYMOORI A R. A robust gene regula-tory network inference method base on Kalman filter and linear regression[J]. PLoS One, 2018, 13(7): e0200094.
[8] CHEN S, SHOJAIE A, WITTEN D M. Network reconstruc-tion from high-dimensional ordinary differential equations[J]. Journal of the American Statistical Association, 2017, 112(520): 1697-1707.
[9] DENG Y, ZENIL H, TEGNéR J, et al. HiDi: an efficient reverse engineering schema for large-scale dynamic regulatory net-work reconstruction using adaptive differentiation[J]. Bio-informatics, 2017, 33(24): 3964-3972.
[10] MA B, FANG M, JIAO X. Inference of gene regulatory net-works based on nonlinear ordinary differential equations[J]. Bioinformatics, 2020, 36(19): 4885-4893.
[11] XING L, GUO M, LIU X, et al. Gene regulatory networks reconstruction using the flooding-pruning hill-climbing al-gorithm[J]. Genes, 2018, 9(7): 342.
[12] DE CAMPOS L M, CANO A, CASTELLANO J G, et al. Combining gene expression data and prior knowledge for inferring gene regulatory networks via Bayesian networks using structural restrictions[J]. Statistical Applications in Genetics and Molecular Biology, 2019, 18(3): 20180042.
[13] 曲璐渲, 郭上慧, 王之琼, 等. 基因调控网络的父节点筛选贝叶斯建模方法[J]. 东北大学学报 (自然科学版), 2020, 41(2): 158-162.
QU L X, GUO S H, WANG Z Q, et al. Modeling of gene regulatory networks by parent node screening-based Baye-sian method[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(2): 158-162.
[14] FRIEDMAN N. Inferring cellular networks using probabi-listic graphical models[J]. Science, 2004, 303(5659): 799-805.
[15] MURPHY K, MIAN S. Modelling gene expression data using dynamic Bayesian networks[R]. Berkeley: University of Ca-lifornia, 1999.
[16] 葛玲玲, 王浩, 姚宏亮. 基于改进 SEM 算法的基因调控网络构建方法[J]. 计算机应用研究, 2010, 27(2): 450-452.
GE L L, WANG H, YAO H L. Method for modeling gene regulatory network based on improved structure expecta-tion maximization algorithm[J]. Application Research of Computers, 2010, 27(2): 450-452.
[17] THORNE T. Approximate inference of gene regulatory net-work models from RNA-Seq time series data[J]. BMC Bio-informatics, 2018, 19(1): 1-12.
[18] 缑葵香, 宫秀军, 汤莉. 基于时序互信息构建基因调控网络[J]. 天津大学学报, 2010, 43(7): 655-660.
GOU K X, GONG X J, TANG L. Constructing gene regula-tion network based on time series mutual information[J]. Journal of Tianjin University, 2010, 43(7): 655-660.
[19] ADABOR E S, ACQUAAH-MENSAH G K. Restricted-derestricted dynamic Bayesian network inference of transcri-ptional regulatory relationships among genes in cancer[J]. Computational Biology and Chemistry, 2019, 79: 155-164.
[20] 俞露, 高阳, 史颖欢. 基于滑动窗口均值先验的非同构动态贝叶斯网络转换点检测算法[J]. 模式识别与人工智能, 2016, 29(8): 751-759.
YU L,GAO Y,SHI Y H. Sliding window prior knowledge-based algorithm for changepoint detection in non-homoge-neous dynamic Bayesian networks[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(8): 751-759.
[21] SHAFIEE KAMALABAD M, HEBERLE A M, THEDIECK K, et al. Partially non-homogeneous dynamic Bayesian net-works based on Bayesian regression models with parti-tioned design matrices[J]. Bioinformatics, 2018, 35(12): 2108-2117.
[22] CHE D, GUO S, JIANG Q, et al. PFBNet: a priori-fused boosting method for gene regulatory network inference[J]. BMC Bioinformatics, 2020, 21(1): 1-13.
[23] QU L, WANG Z, LI C, et al. Dynamic Bayesian network modeling based on structure prediction for gene regulatory network[J]. IEEE Access, 2021, 9: 123616-123634.
[24] AJMAL H B, MADDEN M G. Dynamic Bayesian network learning to infer sparse models from time series gene expression data[J]. IEEE/ACM Transactions on Computa-tional Biology and Bioinformatics, 2022, 19(5): 2794-2805.
[25] GRZEGORCZYK M, HUSMEIER D, EDWARDS K D, et al. Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler[J]. Bioinformatics, 2008, 24(18): 2071-2078.
[26] GRZEGORCZYK M, HUSMEIER D. Modelling non-stationary gene regulatory processes with a non-homogeneous dynamic Bayesian network and the change point process[C]//Proceedings of the 6th International Workshop on Computational Systems Biology, Aarhus, Jun 10-12, 2009.Tampere: Tampere University of Technology, 2009: 51-54.
[27] GRZEGORCZYK M, HUSMEIER D. Non-stationary con-tinuous dynamic Bayesian networks[C]//Advances in Neural Information Processing Systems 22, Vancouver, Dec 7-10, 2009: 682-690.
[28] GRZEGORCZYK M, HUSMEIER D. Non-homogeneous dynamic Bayesian networks for continuous data[J]. Machine Learning, 2011, 83(3): 355-419.
[29] GRZEGORCZYK M. A non-homogeneous dynamic Baye-sian network with a hidden Markov model dependency structure among the temporal data points[J]. Machine Lear-ning, 2016, 102(2): 155-207.
[30] GRZEGORCZYK M, HUSMEIER D. A non-homogeneous dynamic Bayesian network with sequentially coupled inter-action parameters for applications in systems and synthetic biology[J]. Statistical Applications in Genetics and Molecu-lar Biology, 2012, 11(4).
[31] KAMALABAD M S, GRZEGORCZYK M. Improving non-homogeneous dynamic Bayesian networks with sequen-tially coupled parameters[J]. Statistica Neerlandica, 2018, 72(3): 281-305.
[32] KAMALABAD M S, GRZEGORCZYK M. Non-homo-geneous dynamic Bayesian networks with edge-wise se-quentially coupled parameters[J]. Bioinformatics, 2019, 36(4): 1198-1207.
[33] KAMALABAD M S, GRZEGORCZYK M. A new Baye-sian piecewise linear regression model for dynamic net-work reconstruction[J]. BMC Bioinformatics, 2021, 22(2): 196.
[34] GRZEGORCZYK M, HUSMEIER D. Bayesian regulari-zation of non-homogeneous dynamic Bayesian networks by globally coupling interaction parameters[C]//Procee-dings of the 15th International Conference on Artificial In-telligence and Statistics, La Palma, Apr 21-23, 2012: 467-476.
[35] GRZEGORCZYK M, HUSMEIER D. Regularization of non-homogeneous dynamic Bayesian networks with global information-coupling based on hierarchical Bayesian mo-dels[J]. Machine Learning, 2013, 91(1): 105-154.
[36] ONG I M, GLASNER J D, PAGE D. Modelling regulatory pathways in E.coli from time series expression profiles[J]. Bioinformatics, 2002, 18: 241-248.
[37] PERRIN B E, RALAIVOLA L, MAZURIE A, et al. Gene networks inference using dynamic Bayesian networks[J]. Bioinformatics, 2003, 19(S2): 138-148.
[38] TAMADA Y, KIM S, BANNAI H, et al. Estimating gene networks from gene expression data by combining Baye-sian network model with promoter element detection[J]. Bioinformatics, 2003, 19(S2): 227-236.
[39] ZOU M, CONZEN S D. A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data[J]. Bioinformatics, 2005, 21(1): 71-79.
[40] DOJER N, GAMBIN A, MIZERA A, et al. Applying dyna-mic Bayesian networks to perturbed gene expression data[J]. BMC Bioinformatics, 2006, 7(1): 1-11.
[41] WU H, LIU X. Dynamic Bayesian networks modeling for inferring genetic regulatory networks by search strategy: comparison between greedy hill climbing and MCMC me-thods[J]. International Journal of Computer and Informa-tion Engineering, 2008, 2(8): 2585-2595.
[42] NOBILE A, FEARNSIDE A T. Bayesian finite mixtures with an unknown number of components: the allocation sampler[J]. Statistics and Computing, 2007, 17(2): 147-162.
[43] GREEN P J. Reversible jump markov chain Monte Carlo computation and Bayesian model determination[J]. Biome-trika, 1995, 82(4): 711-732.
[44] KO Y, ZHAI C X, RODRIGUEZ-ZAS S L. Inference of gene pathways using Gaussian mixture models[C]//Proceedings of the 2007 IEEE International Conference on Bioinfor-matics and Biomedicine, Silicon Valley, Nov 2-4, 2007. Wa-shington: IEEE Computer Society, 2007: 362-367.
[45] ROBINSON J, HARTEMINK A. Non-stationary dynamic Bayesian networks[C]//Advances in Neural Information Processing Systems 21, Vancouver, Dec 8-11, 2008: 1369-1376.
[46] LEBRE S. Stochastic process analysis for genomics and dynamic Bayesian networks inference[D]. évry: Université d??Evry-Val d??Essonne, 2007.
[47] GEIGER D, HECKERMAN D. Learning Gaussian networks[C]//Proceedings of the 10th Annual Conference on Uncer-tainty in Artificial Intelligence, Seattle, Jul 29-31, 1994. San Francisco: Morgan Kaufmann Publishers Inc, 1994: 235-243.
[48] COOPER G F, HERSKOVITS E. A Bayesian method for the induction of probabilistic networks from data[J]. Ma-chine learning, 1992, 9(4): 309-347.
[49] OATES C J, MUKHERJEE S. Network inference and bio-logical dynamics[J]. The Annals of Applied Statistics, 2012, 6(3): 1209.
[50] KOLAR M, SONG L, AHMED A, et al. Estimating time-varying networks[J]. The Annals of Applied Statistics, 2010: 94-123.
[51] ADERHOLD A, HUSMEIER D, GRZEGORCZYK M. App-roximate Bayesian inference in semi-mechanistic models[J]. Statistics and Computing, 2017, 27(4): 1003-1040.
[52] AHMED A, XING E P. Recovering time-varying networks of dependencies in social and biological studies[J]. Procee-dings of the National Academy of Sciences, 2009, 106(29): 11878-11883.
[53] ADERHOLD A, HUSMEIER D, GRZEGORCZYK M. Sta-tistical inference of regulatory networks for circadian regu-lation[J]. Statistical Applications in Genetics and Molecular Biology, 2014, 13(3): 227-273.
[54] SACHS K, PEREZ O, PE'ER D, et al. Causal protein-signa-ling networks derived from multiparameter single-cell data[J]. Science, 2005, 308(5721): 523-529.
[55] EDWARDS K D, ANDERSON P E, HALL A, et al. Flow-ering locus C mediates natural variation in the high-tempe-rature response of the Arabidopsis circadian clock[J]. The Plant Cell, 2006, 18(3): 639-650.
[56] BROOKS S P, GELMAN A. General methods for monito-ring convergence of iterative simulations[J]. Journal of Computational and Graphical Statistics, 1998, 7(4): 434-455. |