[1] SEMEH B S, SAMI N, ZIED C. A fast and effective parti-tional clustering algorithm for large categorical datasets using a K-means based approach[J]. Computers and Electri-cal Engineering, 2018, 68: 463-483.
[2] MACQUEEN J. Some methods for classification and analysis of multivariate observations[J]. Berkeley Symposium on Mathematical Statistics and Probability, 1967, 1(14): 281-297.
[3] SCITOVSKI R, SABO K, MARTíNEZ-áLVAREZ F, et al.Cluster analysis and applications[M]. Berlin, Heidelberg: Springer, 2021.
[4] POPOV A A, OVSYANKIN A K, EMOMALIVE M R, et al. Application of the clustering algorithm in an automated training system[J]. Journal of Physics: Conference Series, 2020, 1691(1): 012120-012130.
[5] PEI S F, NIE F P, WANG R, et al. An efficient density based clustering algorithm for face groping[J]. Neurocomputing, 2021, 462: 331-343.
[6] AHMED M, MAHMOOD A N. A novel approach for outlier detection and clustering improvement[C]//Proceedings of the 8th IEEE Conference on Industrial Electronics and Applica-tions, Melbourne, Jun 19-21, 2013. Piscataway: IEEE, 2013: 577-582.
[7] GAN G J, NG K P. K-means clustering with outlier removal[J]. Pattern Recognition Letters, 2017, 90: 8-14.
[8] 朱利, 邱媛媛, 于帅, 等. 一种基于快速K-近邻的最小生成树离群检测方法[J]. 计算机学报, 2017, 40(12): 2856-2870.
ZHU L, QIU Y Y, YU S, et al. A fast KNN-based MST outlier detection method[J]. Chinese Journal of Computers, 2017, 40(12): 2856-2870.
[9] 王彬宇, 刘文芬, 胡学先, 等. 基于余弦距离选取初始簇中心的文本聚类研究[J]. 计算机工程与应用, 2018, 54(10): 11-18.
WANG B Y, LIU W F, HU X X, et al. Research on text clus-tering for selecting initial cluster center based on cosine dis-tance[J]. Computer Engineering and Applications, 2018, 54(10): 11-18.
[10] 谢娟英, 王艳娥. 最小方差优化初始聚类中心的K-means算法[J]. 计算机工程, 2014, 40(8): 205-211.
XIE J Y, WANG Y E. K-means algorithm based on mini-mum deviation initialized clustering centers[J]. Computer En-gineering, 2014, 40(8): 205-211.
[11] 谢娟英, 高红超. 基于统计相关性与K-means的区分基因子集选择算法[J]. 软件学报, 2014, 25(9): 2050-2075.
XIE J Y, GAO H C. Statistical correlation and K-means based distinguishable gene subset selection algorithms[J]. Journal of Software, 2014, 25(9): 2050-2075.
[12] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[13] 谢娟英, 屈亚楠. 密度峰值优化初始中心的K-medoids聚类算法[J]. 计算机科学与探索, 2016, 10(2): 230-247.
XIE J Y, QU Y N. K-medoids clustering algorithms with optimized initial seeds by density peaks[J]. Journal of Fron-tiers of Computer Science and Technology, 2016, 10(2): 230-247.
[14] ZHANG G, ZHANG C, ZHANG H. Improved K-means al-gorithm based on density canopy[J]. Knowledge-Based Sys-tems, 2018, 145(29): 289-297.
[15] XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
[16] KATSAVOUNIDS I. A new initialization technique for ge-neralized Lloyd iteration[J]. IEEE Signal Processing Letters, 1994, 1(10): 144-146.
[17] SINGH D, SINGH B. Investigating the impact of data nor-malization on classification performance[J]. Applied Soft Computing, 2019, 97: 105524.
[18] ZHANG Y, CHUNG F L, WANG S. Fast exemplar-based clustering by gravity enrichment between data objects[J]. IEEE Transactions on Systems, Man, and Cybernetics: Sys-tems, 2018, 50(8): 2996-3009.
[19] 田诗宵, 丁立新, 郑金秋. 基于密度峰值优化的K-means文本聚类算法[J]. 计算机工程与设计, 2017, 38(4): 1019-1023.
TIAN S X, DING L X, ZHENG J Q. K-means text clus-tering algorithm based on density peaks[J]. Computer En-gineering and Design, 2017, 38(4): 1019-1023.
[20] BLAKE C L, MERZ C J. UCI repository of machine learning database[EB/OL]. [2021-07-28]. http://archive.ics.uci.edu/ml/index.html.
[21] TAO Q, GU C Q, WANG Z Y. An intelligent clustering al-gorithm for high-dimensional multiview data in big data app-lications[J]. Neurocomputing, 2020, 393: 234-244.
[22] HUBERT L, ARABIE P. Comparing partitions[J]. Journal of Classification, 1985, 2(1): 193-218.
[23] 杨燕, 靳蕃, KAMEL M. 聚类有效性评价综述[J].计算机应用研究, 2008, 25(6): 1630-1632.
YANG Y, JIN F, KAMEL M. Survey of clustering validity evaluation[J]. Application Research of Computers, 2008, 25(6): 1630-1632. |