[1] CHIANG J Y, CHEN Y. Underwater image enhancement by wavelength compensation and dehazing[J]. IEEE Transactions on Image Processing, 2012, 21(4): 1756-1769.
[2] SERIES B T. Methodology for the subjective assessment of the quality of television pictures[R]. Recommendation ITU-R BT, 2012.
[3] SCHETTINI R, CORCHS S. Underwater image processing: state of the art of restoration and image enhancement methods[J]. EURASIP Journal on Advances in Signal Processing, 2010: 746052.
[4] SAAD M A, BOVIK A C, CHARRIER C. Blind prediction of natural video quality[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1352-1365.
[5] XU J T, YE P, LIU Y, et al. No-reference video quality assessment via feature learning[C]//Proceedings of the 2014 IEEE International Conference on Image Processing, Paris, Oct 27-30, 2014. Piscataway: IEEE, 2014: 491-495.
[6] MEN H, LIN H H, SAUPE D. Spatiotemporal feature combination model for no-reference video quality assessm-ent[C]//Proceedings of the 10th International Conference on Quality of Multimedia Experience, Cagliari, May 29-Jun 1, 2018. Piscataway: IEEE, 2018: 1-3.
[7] KANG L, YE P, LI Y, et al. Convolutional neural networks for no-reference image quality assessment[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 1733-1740.
[8] JIA H Z, SUN Q S, WANG T H. PCANet for blind image quality assessment[C]//Proceedings of the 11th International Conference on Computational Intelligence and Security, Shenzhen, Dec 19-20, 2015. Washington: IEEE Computer Society, 2015: 195-198.
[9] BIANCO S, CELONA L, NAPOLETANO P, et al. On the use of deep learning for blind image quality assessment[J]. Signal, Image and Video Processing, 2018, 12(2): 355-362.
[10] YAN Q, GONG D, ZHANG Y. Two-stream convolutional networks for blind image quality assessment[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2200-2211.
[11] LI C, BOVIK A C, WU X. Blind image quality assessment using a general regression neural network[J]. IEEE Transa-ctions on Neural Networks, 2011, 22(5): 793-799.
[12] LIU W T, DUANMU Z F, WANG Z. End-to-end blind quality assessment of compressed videos using deep neural networks[C]//Proceedings of the 26th ACM International Conference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 546-554.
[13] VARGA D, SZIRáNYI T. No-reference video quality asse-ssment via pretrained CNN and LSTM networks[J]. Signal, Image and Video Processing, 2019, 13(8): 1569-1576.
[14] LI D Q, JIANG T T, JIANG M. Quality assessment of in-the-wild videos[C]//Proceedings of the 27th ACM Internat-ional Conference on Multimedia, Nice, Oct 21-25, 2019. New York: ACM, 2019: 2351-2359.
[15] SCHECHNER Y Y, KARPEL N. Recovery of underwater visibility and structure by polarization analysis[J]. IEEE Journal of Oceanic Engineering, 2005, 30 (3): 570-587.
[16] HOU W, WEIDEMANN A D. Objectively assessing under-water image quality for the purpose of automated restor-ation[C]//Proceedings of the Visual Information Processing XVI, Orlando, Apr 10, 2007. San Francisco: SPIE, 2007: 65750Q.
[17] YANG M, SOWMYA A. An underwater color image quality evaluation metric[J]. IEEE Transactions on Image Proce-ssing, 2015, 24(12): 6062-6071.
[18] PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures[J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541-551.
[19] MORENO-ROLDáN J, PONCELA J, OTERO P, et al. A no-reference video quality assessment model for underwater networks[J]. IEEE Journal of Oceanic Engineering, 2018, 45(1): 342-346.
[20] 郭继昌, 李重仪, 张艳, 等. 面向水下图像的质量评价方法[J]. 中国图象图形学报, 2017, 22(1): 1-8.
GUO J C, LI C Y, ZHANG Y, et al. Quality assessment method for underwater images[J]. Journal of Image and Graphics, 2017, 22(1) : 1-8.
[21] 宋巍, 刘诗梦, 黄冬梅, 等. 适用小样本的无参考水下视频质量评价方法[J]. 中国图象图形学报, 2020, 25(9): 1787-1799.
SONG W, LIU S M, HUANG D M, et al. Non-reference underwater video quality assessment method for small size samples[J]. Journal of Image and Graphics, 2020, 25(9): 1787-1799.
[22] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[J]. arXiv:1406. 2199, 2014.
[23] BROX T, BREGLER C, MALIK J. Large displacement optical flow[C]//Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recog-nition, Miami, Jun 20-25, 2009. Washington: IEEE Computer Society, 2009: 41-48.
[24] LUO P, REN J, PENG Z, et al. Differentiable learning-to-normalize via switchable normalization[J]. arXiv:1806.10779, 2018.
[25] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 448-456.
[26] ULYANOV D, VEDALDI A, LEMPITSKY V. Instance normalization: the missing ingredient for fast stylization[J]. arXiv:1607.08022, 2016.
[27] BA J L, KIROS J R, HINTON G E. Layer normalization[J]. arXiv:1607.06450, 2016.
[28] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural net-works[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 1725-1732.
[29] RIMAC-DRLJE S, VRANJE? M, ?AGAR D. Foveated mean squared error—a novel video quality metric[J]. Multimedia Tools and Applications, 2010, 49(3): 425-445.
[30] VRANJE? M, RIMAC-DRLJE S, GRGI? K. Review of objective video quality metrics and performance comparison using different databases[J]. Signal Processing: Image Communication, 2013, 28(1): 1-19.
[31] SESHADRINATHAN K, SOUNDARARAJAN R, BOVIK A C, et al. A subjective study to evaluate video quality assessment algorithms[C]//Proceedings of the Human Vision and Electronic Imaging XV, San Jose, Jan 18-21, 2010. San Francisco: SPIE, 2010: 75270.
[32] SESHADRINATHAN K, SOUNDARARAJAN R, BOVIK A C, et al. Study of subjective and objective quality assess-ment of video[J]. IEEE Transactions on Image Processing, 2010, 19(6): 1427-1441.
[33] AGAIAN S S, SILVER B, PANETTA K. Transform coef-ficient histogram-based image enhancement algorithms using contrast entropy[J]. IEEE Transactions on Image Proces-sing, 2007, 16(3): 741-758.
[34] MITTAL A, MOORTHY A K, BOVIK A C. No-reference image quality assessment in the spatial domain[J]. IEEE Transactions on Image Processing, 2012, 21(12): 4695-4708.
[35] MITTAL A, SAAD M A, BOVIK A C. A completely blind video integrity oracle[J]. IEEE Transactions on Image Proc-essing, 2015, 25(1): 289-300. |