计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (4): 771-791.DOI: 10.3778/j.issn.1673-9418.2205052
赵晔辉,柳林,王海龙,韩海燕,裴冬梅
出版日期:
2023-04-01
发布日期:
2023-04-01
ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan,PEI Dongmei
Online:
2023-04-01
Published:
2023-04-01
摘要: 推荐系统可以在海量的数据信息中获取用户偏好,从而更好地实现个性化推荐,提高用户体检,以及解决互联网中的信息过载问题,但推荐系统仍然存在冷启动和数据稀疏问题。知识图谱作为一种拥有大量实体和丰富语义关系的结构化知识库,不但能够提高推荐系统的准确性,还能够为推荐项目提供可解释性,从而增强用户对推荐系统的信任度,为解决推荐系统中存在的一系列关键问题提供了新方法、新思路。首先针对知识图谱推荐系统进行研究与分析,以应用领域为分类依据将知识图谱推荐系统分为多领域知识图谱推荐系统和特定领域知识图谱推荐系统,同时根据这些知识图谱推荐方法的特点进一步分类,对每类方法进行定量分析和定性分析;之后列举出知识图谱推荐系统在应用领域中常用的数据集,对数据集的规模和特点进行概述;最后对知识图谱推荐系统未来的研究方向进行展望和总结。
赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791.
ZHAO Yehui, LIU Lin, WANG Hailong, HAN Haiyan, PEI Dongmei. Survey of Knowledge Graph Recommendation System Research[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 771-791.
[1] PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]//The Adaptive Web. Berlin, Heidelberg: Springer, 2007: 325-341. [2] SU X, KHOSHGOFTAAR T M. A survey of collaborative filtering techniques[J]. Advances in Artificial Intelligence, 2009. DOI: 10.1155/2009/421425. [3] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J]. IEEE Transactions on Know-ledge and Data Engineering, 2005, 17(6): 734-749. [4] SUN Z, GUO Q, YANG J, et al. Research commentary on recommendations with side information: a survey and research directions[J]. Electronic Commerce Research and Applications, 2019, 37: 100879. [5] 程章桃, 钟婷, 张晟铭, 等. 基于图学习的推荐系统研究综述[J]. 计算机科学, 2022, 49(9): 1-13. YAO Z T, ZHONG T, ZHANG S M, et al. Survey of recommender system based on graph learning[J]. Computer Science, 2022, 49(9): 41-47. [6] 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2): 207-216. CHANG L, ZHANG W T, GU T L, et al. Review of recommendation systems based on knowledge graph[J]. CAAI Transactions on Intelligent Systems, 2019, 14(2): 207-216. [7] 秦川, 祝恒书, 庄福振, 等. 基于知识图谱的推荐系统研究综述[J]. 中国科学: 信息科学, 2020, 50(7): 937-956. QIN C, ZHU H S, ZHUANG F Z, et al. A survey on knowledge graph-based recommender systems[J]. Scientia Sinica: Informationis, 2020, 50(7): 937-956. [8] GUO Q, ZHUANG F Z, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568. [9] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述[J]. 数据分析与知识发现, 2021, 5(12): 1-13. ZHU D L, WEN Y, WAN Z C. Review of recommendation systems based on knowledge graph[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13. [10] 吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40. WU Z Y, TANG Y, LIU H. Survey of personalized learning recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40. [11] 李想, 杨兴耀, 于炯, 等. 基于知识图谱卷积网络的双端推荐算法[J]. 计算机科学与探索, 2022, 16(1): 176-184. LI X, YANG X Y, YU T, et al. Double end knowledge graph convolutional networks for recommender systems[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 176-184. [12] 阎红灿, 王子茹, 李伟芳, 等. 伴随时间的模糊聚类协同过滤推荐算法[J]. 计算机工程与科学, 2021, 43(11): 2084-2090. YAN H C, WANG Z Y, LI W F, et al. Time-based fuzzy cluster collaborative filtering recommendation algorithm[J]. Computer Engineering & Science, 2021, 43(11): 2084-2090. [13] 吴静, 谢辉, 姜火文. 图神经网络推荐系统综述[J]. 计算机科学与探索, 2022, 16(10): 2249-2263. WU J, XIE H, JIANG H W. Survey of graph neural network in recommendation system[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2249-2263. [14] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014. [15] SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298. [16] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80. [17] WANG X, HE X, WANG M, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174. [18] 李世宝, 张益维, 刘建航, 等. 基于知识图谱共同邻居排序采样的推荐模型[J]. 电子与信息学报, 2021, 43(12): 3522-3529. LI S B, ZHANG Y W, LIU J H, et al. Recommendation model based on public neighbor sorting and sampling of knowledge graph[J]. Journal of Electronics & Information Technology, 2021, 43(12): 3522-3529. [19] SUN J, ZHANG Y, GUO W, et al. Neighbor interaction aware graph convolution networks for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 25-30, 2020. New York: ACM, 2020: 1289-1298. [20] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[J]. arXiv:1710.10903, 2017. [21] 王建芳, 文茜琳, 杨许, 等. 基于偏差的图注意力神经网络推荐算法[J]. 控制与决策, 2022, 37(7): 1705-1712. WANG J F, WEN Q L, YANG X, et al. A bias-based graph attention neural network recommender algorithm[J]. Control and Decision, 2022, 37(7): 1705-1712. [22] 苏静, 许天琪, 张贤坤, 等. 基于图卷积与外积的协同过滤推荐模型[J]. 计算机应用研究, 2021, 38(10): 3044-3048. SU J, XU T Q, ZHANG X K, et al. Collaborative filtering recommendation model based on graph convolution and cross product[J]. Application Research of Computers, 2021, 38(10): 3044-3048. [23] 蒋雪瑶, 力维辰, 刘井平, 等. 基于多模态模式迁移的知识图谱实体配图[J]. 计算机工程, 2022, 48(8): 70-76. JIANG X Y, LI W C, LIU J P, et al. Entity image collection based on multi-modality pattern transfer[J]. Computer Engineering, 2022, 48(8): 70-76. [24] 邹长龙, 安敬民, 李冠宇. 基于邻域聚合与CNN的知识图谱实体类型补全[J/OL]. 计算机工程(2022-05-06)[2022-07-01]. https://doi.org/10.19678/j.issn.1000-3428.0063989. ZOU C L, AN J M, LI G Y. Knowledge graph entity type completion based on neighborhood aggregation and CNN [J/OL]. Computer Engineering (2022-05-06) [2022-07-01]. https://doi.org/10.19678/j.issn.1000-3428.0063989. [25] MATUSZEK C, CABRAL J, WITBROCK M J, et al. An introduction to the syntax and content of Cyc[C]//Proceedings of the 2006 AAAI Spring Symposium on Formalizing and Compiling Background Knowledge and Its Applications to Knowledge Representation and Question Answering, Stanford, Mar 27-29, 2006. Menlo Park: AAAI, 2006: 44-49. [26] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]//LNCS 4825: Proceedings of the 6th International Semantic Web Conference, the 2nd Asian Semantic Web Conference, Busan, Nov 11-15, 2007. Berlin, Heidelberg: Springer, 2007: 722-735. [27] DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusion[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. [28] 于合龙, 孙琳. 基于知识图谱的AMI资源精准推荐算法[J]. 计算机仿真, 2021, 38(12): 485-489. YU H L, SUN L. Accurate recommendation algorithm of agricultural massive information resources based on know-ledge map[J]. Computer Integrated Manufacturing Systems, 2021, 38(12): 485-489. [29] HUANG J, ZHAO W X, DOU H J, et al. Improving sequential recommendation with knowledge-enhanced memory networks[C]//Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor, Jul 8-12, 2018. New York: ACM, 2018: 505-514. [30] DEY R, SALEM F M. Gate-variants of gated recurrent unit (GRU) neural networks[C]//Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems, Boston, Aug 6-9, 2017. Piscataway: IEEE, 2017: 1597-1600. [31] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012. [32] BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating embeddings for modeling multi-relational data[C]//Proceedings of the 27th Annual Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. [33] ZHANG J, SHI X, KING I, et al. Dynamic key-value memory networks for knowledge tracing[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 765-774. [34] KARLIK B, OLGAC A V. Performance analysis of various activation functions in generalized MLP architectures of neural networks[J]. International Journal of Artificial Intelligence and Expert Systems, 2011, 1(4): 111-122. [35] YANG D, GUO Z, WANG Z, et al. A knowledge-enhanced deep recommendation framework incorporating GAN-based models[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Washington: IEEE Computer Society, 2018: 1368-1373. [36] DONG Y, CHAWLA N V, SWAMI A. Metapath2Vec: scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 135-144. [37] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [38] YE Y, WANG X, YAO J, et al. Bayes embedding (BEM): refining representation by integrating knowledge graphs and behavior-specific networks[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 679-688. [39] HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2017, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1034. [40] WANG Q, MAO Z, WANG B, et al. Knowledge graph embedding: a survey of approaches and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743. [41] ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. [42] LIN Y, LIU Z, SUN M, et al. Learning entity and relation embeddings for knowledge graph completion[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 2181-2187. [43] WANG H, ZHANG F, ZHAO M, et al. Multi-task feature learning for knowledge graph enhanced recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 2000-2010. [44] CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 151-161. [45] YU X, REN X, GU Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]//Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 27. [46] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. [47] LUO C, PANG W, WANG Z, et al. Hete-CF: social-based collaborative filtering recommendation using heterogeneous relations[C]//Proceedings of the 2014 IEEE International Conference on Data Mining, Shenzhen, Dec 14-17, 2014. Washington: IEEE Computer Society, 2014: 917-922. [48] YU X, REN X, SUN Y, et al. Recommendation in heterogeneous information networks with implicit user feedback[C]//Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China, Oct 12-16, 2013. New York: ACM, 2013: 347-350. [49] YU X, REN X, SUN Y, et al. Personalized entity recommendation: a heterogeneous information network approach[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining, New York, Feb 24-28, 2014. New York: ACM, 2014: 283-292. [50] SHI C, ZHANG Z, LUO P, et al. Semantic path based personalized recommendation on weighted heterogeneous information networks[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, Melbourne, Oct 18-23, 2015. New York: ACM, 2015: 453-462. [51] ZHAO H, YAO Q, LI J, et al. Meta-graph based recommendation fusion over heterogeneous information networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 635-644. [52] SUN Z, YANG J, ZHANG J, et al. Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems, Vancouver, Oct 2, 2018. New York: ACM, 2018: 297-305. [53] WANG X, WANG D, XU C, et al. Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27- Feb 1, 2019. Menlo Park: AAAI, 2019: 5329-5336. [54] HU B, SHI C, ZHAO W X, et al. Leveraging meta-path based context for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1531-1540. [55] MA W, ZHANG M, CAO Y, et al. Jointly learning explainable rules for recommendation with knowledge graph[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 1210-1221. [56] XIAN Y, FU Z, MUTHUKRISHNAN S, et al. Reinforcement knowledge graph reasoning for explainable recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 285-294. [57] WANG H, ZHANG F, WANG J, et al. RippleNet: propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 417-426. [58] TANG X, WANG T, YANG H, et al. AKUPM: attention-enhanced knowledge-aware user preference model for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1891-1899. [59] WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 3307-3313. [60] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016. [61] WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 968-977. [62] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. [63] QU Y, BAI T, ZHANG W, et al. An end-to-end neighborhood-based interaction model for knowledge-enhanced recommendation[C]//Proceedings of the 1st International Workshop on Deep Learning Practice for High-Dimensional Sparse Data, Anchorage, Aug 5, 2019. New York: ACM, 2019: 1-9. [64] ZHAO J, ZHOU Z, GUAN Z, et al. IntentGC: a scalable graph convolution framework fusing heterogeneous information for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 2347-2357. [65] SHA X, SUN Z, ZHANG J. Hierarchical attentive knowledge graph embedding for personalized recommendation[J]. Electronic Commerce Research and Applications, 2021, 48: 101071. [66] WANG H, ZHANG F, XIE X, et al. DKN: deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 1835-1844. [67] JI G, HE S, XU L, et al. Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 687-696. [68] SZE V, CHEN Y H, YANG T J, et al. Efficient processing of deep neural networks: a tutorial and survey[J]. Proceedings of the IEEE, 2017, 105(12): 2295-2329. [69] WANG H, ZHANG F, HOU M, et al. SHINE: signed heterogeneous information network embedding for sentiment link prediction[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining, Marina Del Rey, Feb 5-9, 2018. New York: ACM, 2018: 592-600. [70] AI Q, AZIZI V, CHEN X, et al. Learning heterogeneous knowledge base embeddings for explainable recommendation[J]. Algorithms, 2018, 11(9): 137. [71] LIU X, AGGARWAL C, LI Y F, et al. Kernelized matrix factorization for collaborative filtering[C]//Proceedings of the 2016 SIAM International Conference on Data Mining, Miami, May 5-7, 2016. Philadelphia: SIAM, 2016: 378-386. [72] LU S, WANG B, WANG H, et al. A hybrid collaborative filtering algorithm based on KNN and gradient boosting[C]//Proceedings of the 2018 13th International Conference on Computer Science & Education, Colombo, Aug 8-11, 2018. Piscataway: IEEE, 2018: 1-5. [73] Amazon review data[EB/DS]. [2022-05-05]. http://jmcauley. ucsd.edu/data/amazon/. [74] DAVAGDORJ K, PARK K H, RYU K H. A collaborative filtering recommendation system for rating prediction[C]//Proceedings of the 15th International Conference on IIH-MSP in Conjunction with the 12th International Conference on FITAT, Jilin, Jul 18-20, 2019. Singapore: Springer, 2019: 265-271. [75] SONG W, DUAN Z, YANG Z, et al. Explainable know-ledge graph-based recommendation via deep reinforcement learning[J]. arXiv:1906.09506, 2019. [76] UYAR A, ALIYU F M. Evaluating search features of Google knowledge graph and Bing satori: entity types, list searches and query interfaces[J]. Online Information Review, 2015, 39(2): 197-213. [77] 丁来旭, 刘洪娟. 复杂网络上基于多维特征表示学习的推荐算法[J]. 东北大学学报(自然科学版), 2022, 43(3): 359-367. DING L X, LIU H J. Recommendation algorithm based on multi-dimensional feature representation learning in complex networks[J]. Journal of Northeastern University (Natural Science), 2022, 43(3): 359-367. [78] HARPER F M, KONTAN J A. The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4): 1-19. [79] 田萱, 丁琪, 廖子惠, 等. 基于深度学习的新闻推荐算法研究综述[J]. 计算机科学与探索, 2021, 15(6): 971-998. TIAN X, DING Q, LIAO Z H, et al. Survey on deep learning based news recommendation algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 971-998. [80] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collabo-rative knowledge base[J]. Communications of the ACM, 2014, 57(10): 78-85. [81] 韩滕跃, 牛少彰, 张文. 基于对比学习的多模态序列推荐算法[J]. 计算机应用, 2022, 42(6): 1683-1688. HAN T Y, NIU S Z, ZHANG W. Multimodal sequential recommendation algorithm based on contrastive learning[J]. Journal of Computer Applications, 2022, 42(6): 1683-1688. [82] YANG J, YECIES B. Mining Chinese social media UGC: a big-data framework for analyzing Douban movie reviews[J]. Journal of Big Data, 2016, 3: 1-23. [83] SHAHRIARI M, KLAMMA R. Signed social networks: link prediction and overlapping community detection[C]//Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, Aug 25-28, 2015. New York: ACM, 2015: 1608-1609. [84] JIN W, JIANG H, QU M, et al. Recurrent event network: global structure inference over temporal knowledge graph[J]. arXiv:1904.05530, 2019. [85] CHEN S Y, YU Y, DA Q, et al. Stabilizing reinforcement learning in dynamic environment with application to online recommendation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1187-1196. [86] SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 555-563. [87] 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法[J]. 计算机科学, 2022, 49(9): 41-47. ZHANG J, DONG S B. Cross-domain recommendation based on review aspect-level user preference transfer[J]. Computer Science, 2022, 49(9): 41-47. [88] ZHU Y, TANG Z, LIU Y, et al. Personalized transfer of user preferences for cross-domain recommendation[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, Feb 21-25, 2022. New York: ACM, 2022: 1507-1515. |
[1] | 韩虎, 郝俊, 张千锟, 孟甜甜. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. |
[2] | 马力, 姚伟凡. 结合关系路径与有向子图推理的链接预测方法[J]. 计算机科学与探索, 2023, 17(2): 478-488. |
[3] | 尹华, 肖石冉, 陈智全, 胡振生, 龙泳潮. 多语义关系嵌入的知识图谱补全方法[J]. 计算机科学与探索, 2023, 17(2): 467-477. |
[4] | 孙水发, 李小龙, 李伟生, 雷大江, 李思慧, 杨柳, 吴义熔. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. |
[5] | 高仰, 刘渊. 融合社交关系和知识图谱的推荐算法[J]. 计算机科学与探索, 2023, 17(1): 238-250. |
[6] | 沈铁孙龙, 付晓东, 岳昆, 刘骊, 刘利军. 融合人格特征的概率推荐模型[J]. 计算机科学与探索, 2023, 17(1): 251-262. |
[7] | 武美, 丁怡彤, 赵建立. 改进的增量式动静结合协同过滤方法[J]. 计算机科学与探索, 2022, 16(9): 2089-2095. |
[8] | 于慧琳, 陈炜, 王琪, 高建伟, 万怀宇. 使用子图推理实现知识图谱关系预测[J]. 计算机科学与探索, 2022, 16(8): 1800-1808. |
[9] | 萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8): 1727-1741. |
[10] | 田萱, 陈杭雪. 推荐任务中知识图谱嵌入应用研究综述[J]. 计算机科学与探索, 2022, 16(8): 1681-1705. |
[11] | 韩毅, 乔林波, 李东升, 廖湘科. 知识增强型预训练语言模型综述[J]. 计算机科学与探索, 2022, 16(7): 1439-1461. |
[12] | 陈江美, 张文德. 基于位置社交网络的兴趣点推荐系统研究综述[J]. 计算机科学与探索, 2022, 16(7): 1462-1478. |
[13] | 郭晓旺, 夏鸿斌, 刘渊. 融合知识图谱与图卷积网络的混合推荐模型[J]. 计算机科学与探索, 2022, 16(6): 1343-1353. |
[14] | 董文波, 孙仕亮, 殷敏智. 医学知识推理研究现状与发展[J]. 计算机科学与探索, 2022, 16(6): 1193-1213. |
[15] | 王宝亮, 潘文采. 基于知识图谱的双端邻居信息融合推荐算法[J]. 计算机科学与探索, 2022, 16(6): 1354-1361. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||