[1] ZHANG M L, ZHOU Z H. A review on multi-label learning algorithms[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(8): 1819-1837.
[2] PEREIRA R B, PLASTINO A, ZADROZNY B, et al. Categorizing feature selection methods for multi-label class-ification[J]. Artificial Intelligence Review, 2018, 49(1): 57-78 .
[3] WU Y P, LIN H T. Progressive random k-labelsets for cost-sensitive multi-label classification[J]. Machine Learning, 2017, 106(5): 671-694.
[4] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3): 333-359.
[5] TSOUMAKAS G, KATAKIS I. Multi-label claasification: an overview[J]. International Journal of Data Warehousing and Mining, 2007, 3(3): 1-13.
[6] XU Y, YANG Y, WANG Z, et al. Prediction of acetylation and succinylation in proteins based on multilabel learning RankSVM[J]. Letters in Organic Chemistry, 2019, 15(4): 275-282.
[7] ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
[8] ZHANG M L, ZHOU Z H. Multilabel neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1338-1351.
[9] NAM J,KIM J, MENCíA E L, et al. Large-scale multi-label text classification-revisiting neural networks[C]//LNCS 8725: Proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, Nancy, Sep 15-19, 2014. Cham: Springer, 2014: 437-452.
[10] KURATA G, BING X, ZHOU B W. Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, Jun 12-17, 2016. Stroudsburg: ACL, 2016: 521-526.
[11] CHARTE F, RIVERA A J, DEL JESUS M J, et al. Addressing imbalance in multilabel classification: measures and random resampling algorithms[J]. Neurocomputing, 2015, 163: 3-16.
[12] YAMAN E, SUBASI A. Comparison of Bagging and Boosting ensemble machine learning methods for automated EMG signal classification[J]. BioMed Research International, 2019: 9152506.
[13] CHARTE F, RIVERA A J R, JESUS M J, et al. A first approach to deal with imbalance in multi-label datasets[C]//LNCS 8073: Proceedings of the 8th International Conference on Hybrid Artificial Intelligent Systems, Salamanca, Sep 11-13, 2013. Berlin, Heidelberg: Springer, 2013: 150-160.
[14] TAHIR M A, KITTLER J, BOURIDANE A. Multilabel classification using heterogeneous ensemble of multi-label classifiers[J]. Pattern Recognition Letters, 2012, 33(5): 513-523.
[15] 王昊, 邓三鸿, 苏新宁. 基于字序列标注的中文关键词抽取研究[J]. 现代图书情报技术, 2011(12): 39-45.
WANG H, DENG S H, SU X N. Research on Chinese keyword extraction based on character sequence annotation[J]. Modern Library and Information Technology, 2011(12): 39-45.
[16] 张静. 基于深度学习的中文评论观点抽取研究[D]. 成都: 西南交通大学, 2018.
ZHANG J. Research on opinion extraction of Chinese reviews based on deep learning[D]. Chengdu: Southwest Jiaotong University, 2018.
[17] 肖雨奇. 多标签学习应用于中医诊断帕金森中类别不均衡问题研究[D]. 南京: 南京大学, 2016.
XIAO Y Q. Application of multi label learning in the diagnosis of Parkinson’s disease in traditional Chinese medicine[D]. Nanjing: Nanjing University, 2016. |