[1] BLAKLEY G R. Safeguarding cryptographic keys[C]//Pro-ceedings of the 1979 International Workshop on Managing Requirements Knowledge, New York, Jun 4-7, 1979. Pisca-taway: IEEE, 1979: 313-317.
[2] SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 24(11): 612-613.
[3] JAMSHIDPOUR S, AHMADIAN Z. Security analysis of a dynamic threshold secret sharing scheme using linear sub-space method[J]. Information Processing Letters, 2020, 163: 105994.
[4] HUANG P C, CHANG C C, LI Y H, et al. Enhanced (n, n)-threshold QR code secret sharing scheme based on error correction mechanism[J]. Journal of Information Security and Applications, 2021, 58(11): 102719.
[5] HARN L, XIA Z, HSU C, et al. Secret sharing with secure secret reconstruction[J]. Information Sciences, 2020, 519: 1-8.
[6] 张艳硕, 王泽豪, 杜耀刚, 等. 基于矩阵特征值的可验证无可信中心门限方案[J]. 武汉大学学报(理学版), 2020, 66(2): 135-140.
ZHANG Y S, WANG Z H, DU Y G, et al. Verifiable thres-hold scheme without trusted center based on matrix eigen-value[J]. Journal of Wuhan University (Natural Science Edition), 2020, 66(2): 135-140.
[7] ZHANG E, LI M, YIU S M, et al. Fair hierarchical secret sharing scheme based on smart contract[J]. Information Sciences, 2021, 546: 166-176.
[8] ITO M, SAITO A, NISHIZEKI T. Secret sharing schemes realizing general access structures[J]. Electronics and Communi-cations in Japan (Part III Fundamental Electronic Science), 1989, 72(9): 56-64.
[9] BRICKELL E F. Some ideal secret sharing schemes[C]//LNCS 434: Proceedings of the 1989 Workshop on the Theory and Application of Cryptographic Techniques, Houthalen, Apr 10-13, 1989. Berlin, Heidelberg: Springer, 1989: 468-475.
[10] HARN L, HSU C, ZHANG M, et al. Realizing secret sharing with general access structure[J]. Information Sciences, 2016, 367/368: 209-220.
[11] ERIGUCHI R, KUNIHIRO N. Strong security of linear ramp secret sharing schemes with general access structures[J]. Information Processing Letters, 2020, 164: 106018.
[12] MASHHADI S. Secure publicly verifiable and proactive secret sharing schemes with general access structure[J]. Information Sciences, 2017, 378: 99-108.
[13] LIU Z Q, ZHU G P, DING F, et al. Weighted visual secret sharing for general access structures based on random grids[J]. Signal Processing Image Communication, 2021, 92(4): 116129.
[14] LIN C, HU H, CHANG C C, et al. A publicly verifiable multi-secret sharing scheme with outsourcing secret reconstruction[J]. IEEE Access, 2018, 6: 70666-70673.
[15] KABIRIRAD S, ESLAMI Z. Improvement of (n,n)-multi-secret image sharing schemes based on Boolean operations[J]. Journal of Information Security and Applications, 2019, 47: 16-27.
[16] ZHANG B H, TANG Y S. On the construction and analysis of verifiable multi-secret sharing based on non-homogeneous linear recursion[J]. Journal of Information Science and En-gineering, 2018, 34(3): 749-763.
[17] LI J, WANG X, HUANG Z, et al. Multi-level multi-secret sharing scheme for decentralized e-voting in cloud computing[J]. Journal of Parallel and Distributed Computing, 2019, 130: 91-97.
[18] SONG Y, LI Z H, LI Y M, et al. A new multi-use multi-secret sharing scheme based on the duals of minimal linear codes[J]. Security and Communication Networks, 2015, 8(2): 202-211.
[19] BASIT A, CHANAKYA P, VENKAIAH V C, et al. New multi-secret sharing scheme based on super increasing sequence for level-ordered access structure[J]. International Journal of Communication Networks and Distributed Systems, 2020, 24(1): 357-380.
[20] ORAEI H, DEHKORDI M H. How to construct a verifiable multi-secret sharing scheme based on graded encoding sche-mes[J]. IET Information Security, 2019, 13(4): 343-351.
[21] LI J,?WANG X M,?HUANG Z A, et al. Multi-level multi-secret sharing scheme for decentralized e-voting in cloud com-puting[J]. Journal of Parallel and Distributed Computing, 2019, 130: 91-97.
[22]?BISHT K,?DESHMUKH M. A novel approach for multilevel multi-secret image sharing scheme[J]. Journal of Supercom-puting, 2021, 77(10): 1-35.
[23] YAN X, LI J, PAN Z, et al. Multiparty verification in image secret sharing[J]. Information Sciences, 2021, 562: 475-490.
[24] XIONG L, ZHONG X, YANG C N, et al. Transform domain-based invertible and lossless secret image sharing with au-thentication[J]. IEEE Transactions on Information Forensics and Security, 2021, 16: 2912-2925.
[25] STADLER M. Publicly verifiable secret sharing[C]//LNCS 1070: Proceedings of the 1996 International Conference on the Theory and Application of Cryptographic Techniques, Saragossa, May 12-16, 1996. Berlin, Heidelberg: Springer, 1996: 190-199.
[26] HERZBERG A, JARECKI S, KRAWCZYK H, et al. Proactive secret sharing or: how to cope with perpetual leakage[C]//LNCS 963: Proceedings of the 15th Annual International Cry-ptology Conference, Santa Barbara, Aug 27-31, 1995. Berlin, Heidelberg: Springer, 1995: 339-352.
[27] HARN L, HSU C F. (t, n) Multi-secret sharing scheme based on bivariate polynomial[J]. Wireless Personal Communica-tions, 2017, 95(2): 1495-1504.
[28] MASHHADI S, DEHKORD M H, KIAMARI N. Provably secure verifiable multi-stage secret sharing scheme based on monotone span program[J]. IET Information Security, 2017, 11(6): 326-331.
[29] 张敏, 杜伟章. 可公开验证可定期更新的多秘密共享方案[J]. 计算机工程与应用, 2016, 52(2): 117-126.
ZHANG M, DU W Z. Publicly verifiable and periodically renewable multi-secret sharing scheme[J]. Computer Engi-neering and Applications, 2016, 52(2): 117-126.
[30] 王彩芬, 苏舜昌, 杨小东. 可动态更新的口令授权多秘密共享方案[J]. 计算机工程与科学, 2019, 41(9): 1597-1602.
WANG C F, SU S C, YANG X D. A dynamically updated password authorization multi-secret sharing scheme[J]. Com-puter Engineering and Science, 2019, 41(9): 1597-1602.
[31] CHEN D, LU W, XING W W, et al. An efficient verifiable threshold multi-secret sharing scheme with different stages[J]. IEEE Access, 2019, 7: 107104-107110.
[32] XIAO L L, LIU M L. Linear multi-secret sharing schemes[J]. Science in China Series F: Information Sciences, 2005, 48(1): 125-136.
[33] KARCHMER M, WIGDERSON A. On span programs[C]// Proceedings of the 8th Annual Structure in Complexity Theory Conference, San Diego, May 18-21, 1993. Washington: IEEE Computer Society, 1993: 102-111.
[34] GOLDREICH O, MICALI S, WIGDERSON A. How to play any mental game or a completeness theorem for protocols with honest majority[C]//Proceedings of the 19th Annual ACM Symposium on Theory of Computing. New York: ACM, 1987.
[35] 李大伟, 杨庚, 朱莉. 一种基于身份加密的可验证秘密共享方案[J]. 电子学报, 2010, 38(9): 2059-2065.
LI D W, YANG G, ZHU L. An ID based verifiable secret sharing scheme[J]. Acta Electronica Sinica, 2010, 38(9): 2059-2065.
[36] CRAMER R, DAMGARD I, MAURER U. General secure multi-party computation from any linear secret sharing scheme[C]//LNCS 1807: Proceedings of the 2000 International Con-ference on the Theory and Application of Cryptographic Te-chniques, Bruges, May 14-18, 2000. Berlin, Heidelberg: Sprin-ger, 2000: 316-334.
[37] BONEH D, FRANKLIN M. Identity-based encryption from the Weil pairing[C]//LNCS 2139: Proceedings of the 21st Annual International Cryptology Conference, Santa Barbara, Aug 19-23, 2001. Berlin, Heidelberg: Springer, 2001: 213-229. |