计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (6): 1268-1284.DOI: 10.3778/j.issn.1673-9418.2209069
彭晏飞,张睿思,王瑞华,郭家隆
出版日期:
2023-06-01
发布日期:
2023-06-01
PENG Yanfei, ZHANG Ruisi, WANG Ruihua, GUO Jialong
Online:
2023-06-01
Published:
2023-06-01
摘要: 少样本知识图谱补全(FKGC)是目前知识图谱补全任务的一个研究热点,旨在拥有少量样本数据的情况下,完成知识图谱补全任务。该任务在实际应用和知识图谱领域都有着重要的研究意义,为了进一步促进FKGC领域的发展,对目前各类方法进行了全面总结和分析。首先,描述了FKGC的概念和相关内容;其次,以技术方法作为分类依据,归纳总结出三类FKGC方法,包括基于度量学习的方法、基于元学习的方法以及基于其他模型的方法,并从模型核心、模型思路、优缺点等角度对每种方法进行分析和总结;然后,汇总了FKGC方法的数据集和评价指标,并从模型特点和实验结果两方面对FKGC方法进行分析与归纳;最后,从实际问题出发,总结了目前FKGC任务的难点问题,分析了问题背后的困难,给出了相应的解决方法,同时展望了该领域未来值得关注的几个发展方向。
彭晏飞, 张睿思, 王瑞华, 郭家隆. 少样本知识图谱补全技术研究[J]. 计算机科学与探索, 2023, 17(6): 1268-1284.
PENG Yanfei, ZHANG Ruisi, WANG Ruihua, GUO Jialong. Survey on Few-Shot Knowledge Graph Completion Technology[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1268-1284.
[1] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. [2] MITCHELL T, COHEN W, HRUSCHKA E, et al. Never-ending learning[J]. Communications of the ACM, 2018, 61(5): 103-115. [3] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collabo-rative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85. [4] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th Interna-tional Conference on World Wide Web, Alberta, May 8-12, 2007. New York: ACM, 2007: 697-706. [5] XIONG C, POWER R, CALLAN J. Explicit semantic ran-king for academic search via knowledge graph embedding[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1271-1279. [6] HUANG X, ZHANG J, LI D, et al. Knowledge graph embed-ding based question answering[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 105-113. [7] LUKOVNIKOV D, FISCHER A, LEHMANN J, et al. Neural network-based question answering over knowledge graphs on word and character level[C]//Proceedings of the 26th International Conference on World Wide Web, Perth, Apr 3-7, 2017. New York: ACM, 2017: 1211-1220. [8] LIU W, YIN L, WANG C, et al. Multitask healthcare mana-gement recommendation system leveraging knowledge graph[J]. Journal of Healthcare Engineering, 2021: 1233483. [9] WANG X, HE X, CAO Y, et al. KGAT: knowledge graph at-tention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowle-dge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 950-958. [10] 舒世泰, 李松, 郝晓红, 等. 知识图谱嵌入技术研究进展[J]. 计算机科学与探索, 2021, 15(11): 2048-2062. SHU S T, LI S, HAO X H, et al. Knowledge graph embed-ding technology: a review[J]. Journal of Frontiers of Com-puter Science and Technology, 2021, 15(11): 2048-2062. [11] CHAMI I, WOLF A, JUAN D C, et al. Low-dimensional hyperbolic knowledge graph embeddings[J]. arXiv:2005.00545, 2020. [12] DETTMERS T, MINERVINI P, STENETORP P, et al. Con-volutional 2D knowledge graph embeddings[C]//Proceed-ings of the 32nd AAAI Conference on Artificial Intelli-gence, the 30th Innovative Applications of Artificial Intelli-gence, and the 8th AAAI Symposium on Educational Adva-nces in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 1811-1818. [13] BORDES A, USUNIER N, GARCíA-DURáN A, et al. Tran-slating embeddings for modeling multi-relational data[C]//Proceedings of the 27th Annual Conference on Neural Infor-mation Processing Systems, Lake Tahoe, Dec 5-8, 2013. Red Hook: Curran Associates, 2013: 2787-2795. [14] TROUILLON T, WELBL J, RIEDEL S, et al. Complex embed-dings for simple link prediction[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 2071-2080. [15] 陈钦况, 陈珂, 伍赛, 等. 关于主动学习下的知识图谱补全研究[J]. 计算机科学与探索, 2020, 14(5): 769-782. CHEN Q K, CHEN K, WU S, et al. Research about know-ledge graph completion based on active learning[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 769-782. [16] XIONG W, YU M, CHANG S, et al. One-shot relational learning for knowledge graphs[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Pro-cessing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 1980-1990. [17] SONG Y, WANG T, MONDAL S K, et al. A comprehensive survey of few-shot learning: evolution, applications, chal-lenges, and opportunities[J]. arXiv:2205.06743, 2022. [18] SUNG F, YANG Y, ZHANG L, et al. Learning to compare: relation network for few-shot learning[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2018: 1199-1208. [19] LI Z, LI X, WEI Y, et al. Transferable end-to-end aspect-based sentiment analysis with selective adversarial learning[C]//Proceedings of the 2019 Conference on Empirical Met-hods in Natural Language Processing and the 9th Interna-tional Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4590-4600. [20] YU M, GUO X, YI J, et al. Diverse few-shot text classi-fication with multiple metrics[C]//Proceedings of the 2018 Conference of the North American Chapter of the Associa-tion for Computational Linguistics: Human Language Tech-nologies, Volume 1 (Long Papers), New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 1206-1215. [21] CHEN J, GENG Y, CHEN Z, et al. Low-resource learning with knowledge graphs: a comprehensive survey[J]. arXiv:2112.10006, 2021. [22] ZHANG W, CHEN J, LI J, et al. Knowledge graph reaso-ning with logics and embeddings: survey and perspective[J]. arXiv:2202.07412, 2022. [23] ZHANG C, YAO H, HUANG C, et al. Few-shot knowledge graph completion[C]//Proceedings of the 2020 AAAI Con-ference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 3041-3048. [24] SHENG J, GUO S, CHEN Z, et al. Adaptive attentional net-work for few-shot knowledge graph completion[C]//Procee-dings of the 2020 Conference on Empirical Methods in Natural Language Processing, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 1681-1691. [25] LIANG Y I, ZHAO S, CHENG B, et al. Exploring entity interactions for few-shot relation learning (student abstract)[J]. arXiv:2205.01878, 2022. [26] LI Y, YU K, ZHANG Y, et al. Learning relation-specific re-presentations for few-shot knowledge graph completion[J]. arXiv:2203.11639, 2022. [27] ZHANG Y, ZHANG X, WANG J, et al. Generalized rela-tion learning with semantic correlation awareness for link prediction[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 4679-4687. [28] WANG S, HUANG X, CHEN C, et al. Reform: error-aware few-shot knowledge graph completion[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management, Nov 1-5, 2021. New York: ACM, 2021: 1979-1988. [29] YUAN X, XU C C, LI P, et al. Relational learning with hierarchical attention encoder and recoding validator for few-shot knowledge graph completion[C]//Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing, Apr 25-29, 2022. New York: ACM, 2022: 786-794. [30] WANG F, XIE Y, ZHANG K, et al. BERT-based knowledge graph completion algorithm for few-shot[C]//Proceedings of the 2021 2nd International Conference on Big Data Eco-nomy and Information Management, Sanya, Dec 3-5, 2021. Piscataway: IEEE, 2021: 217-224. [31] ZHANG J, WU T, QI G. Gaussian metric learning for few-shot uncertain knowledge graph completion[C]//LNCS 12681: Proceedings of the 26th International Conference on Data-base Systems for Advanced Applications, Taipei, China, Apr 11-14, 2021. Cham: Springer, 2021: 256-271. [32] XIE P H, ZHOU G Y, LIU J, et al. Incorporating global-local neighbors with Gaussian mixture embedding for few-shot knowledge graph completion[J]. SSRN Electronic Journal, 2022: 1-10. [33] ZHANG X, LIANG X, ZHENG X, et al. When true beco-mes false: few-shot link prediction beyond binary relations through mining false positive entities[C]//Proceedings of the 30th ACM International Conference on Multimedia, Oct 10-14, 2022. New York: ACM, 2022: 4063-4071. [34] XIAO S, DUAN L, XIE G C, et al. HMNet: hybrid matching network for few-shot link prediction[C]//LNCS 12681: Pro-ceedings of the 26th International Conference on Database Systems for Advanced Applications, Taipei, China, Apr 11-14, 2021. Cham: Springer, 2021: 307-322. [35] CHEN M, ZHANG W, ZHANG W, et al. Meta relational lear-ning for few-shot link prediction in knowledge graphs[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 4217-4226. [36] LV X, GU Y, HAN X, et al. Adapting meta knowledge graph information for multi-hop reasoning over few-shot relations[C]//Proceedings of the 2019 Conference on Empirical Met-hods in Natural Language Processing and the 9th Interna-tional Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 3376-3381. [37] NIU G, LI Y, TANG C, et al. Relational learning with gated and attentive neighbor aggregator for few-shot knowledge graph completion[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 213-222. [38] ZHENG S, MAI S, SUN Y, et al. Subgraph-aware few-shot inductive link prediction via meta-learning[J]. IEEE Tran-sactions on Knowledge & Data Engineering, 2022. DOI: 10.1109/TKDE.2022.3177212. [39] BOSE A J, JAIN A, MOLINO P, et al. Meta-graph: few shot link prediction via meta learning[J]. arXiv:1912.09867, 2019. [40] WANG H, XIONG W, YU M, et al. Meta reasoning over knowledge graphs[J]. arXiv:1908.04877, 2019. [41] JAMBOR D, TERU K K, PINEAU J, et al. Exploring the limits of few-shot link prediction in knowledge graphs[C]//Proceedings of the 16th Conference of the European Cha-pter of the Association for Computational Linguistics: Main Volume, Aug 2-5, 2021. Stroudsburg: ACL, 2021: 2816-2822. [42] JIANG Z Y, GAO J L, LV X Q. MetaP: meta pattern lear-ning for one-shot knowledge graph completion[C]//Procee-dings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 2232-2236. [43] WU H, YIN J, RAJARATNAM B, et al. Hierarchical rela-tional learning for few-shot knowledge graph completion[J]. arXiv:2209.01205, 2022. [44] XIE H C, LI A P, JIA Y. Few-shot knowledge reasoning: an attention mechanism based method[C]//JIA Y, GU Z Q, LI A P. LNCS 12647: MDATA: A New Knowledge Represen-tation Model: Theory, Methods and Applications. Cham: Springer, 2021: 152-164. [45] YANG C, WANG C, LU Y, et al. Few-shot link prediction in dynamic networks[C]//Proceedings of the 15th ACM International Conference on Web Search and Data Mining, Feb 21-25, 2022. New York: ACM, 2022: 1245-1255. [46] DU Z, ZHOU C, YAO J, et al. Cognitive knowledge graph reasoning for one-shot relational learning[J]. arXiv:1906.05489, 2019. [47] 张宁豫, 谢辛, 陈想, 等.基于知识协同微调的低资源知识图谱补全方法[J]. 软件学报, 2022, 33(10): 3531-3545. ZHANG N Y, XIE X, CHEN X, et al. Knowledge collabora-tive fine-tuning for low-resource knowledge graph comple-tion[J]. Journal of Software, 2022, 33(10): 3531-3545. [48] ZHANG N Y, DENG S M, SUN Z L, et al. Relation adver-sarial network for low resource knowledge graph comple-tion[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 1-12. [49] XIE H, LI A, JIA Y. Few-shot knowledge reasoning method based on attention mechanism[C]//Proceedings of the 2019 8th International Conference on Computing and Pattern Recog-nition, Beijing, Oct 23-25, 2019. New York: ACM, 2019: 46-51. [50] SUN J, ZHOU Y, ZONG C. One-shot relation learning for knowledge graphs via neighborhood aggregation and paths encoding[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2021, 21(3): 1-19. [51] ZHANG C X, YU L, SAEBI M, et al. Few-shot multi-hop relation reasoning over knowledge bases[C]//Findings of the Association for Computational Linguistics: EMNLP 2020, Nov 16-20, 2020. Stroudsburg: ACL, 2020: 580-585. [52] BAEK J, LEE D B, HWANG S J. Learning to extrapolate knowledge: transductive few-shot out-of-graph link predic-tion[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 546-560. [53] IOANNIDIS V N, ZHENG D, KARYPIS G. Few-shot link prediction via graph neural networks for COVID-19 drug-repurposing[J]. arXiv:2007.10261, 2020. [54] QIN P D, WANG X, CHEN W H, et al. Generative adver-sarial zero-shot relational learning for knowledge graphs[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8673-8680. [55] WANG Z, LAI K, LI P, et al. Tackling long-tailed relations and uncommon entities in knowledge graph completion[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 250-260. [56] PETRONI F, ROCKT?SCHEL T, RIEDEL S, et al. Language models as knowledge bases?[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 2463-2473. [57] CHEN C, WANG Y, LI B, et al. Knowledge is flat: a seq2seq generative framework for various knowledge graph comple-tion[C]//Proceedings of the 29th International Conference on Computational Linguistics, Oct 12-17, 2022. Stroudsburg: ACL, 2022: 4005-4017. [58] XIE X, ZHANG N, LI Z, et al. From discrimination to gene-ration: knowledge graph completion with generative trans-former[C]//Proceedings of the ACM Web Conference 2022, Apr 25-29, 2022. New York: ACM, 2022: 162-165. [59] WANG B, SHEN T, LONG G, et al. Structure-augmented text representation learning for efficient knowledge graph completion[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 1737-1748. [60] YANG R, WEI Z, FAN Y, et al. A few-shot inductive link prediction model in knowledge graphs[J]. IEEE Access, 2022, 10: 97370-97380. [61] YAO Y, ZHANG Z, XU Y, et al. Data augmentation for few-shot knowledge graph completion from hierarchical pers-pective[C]//Proceedings of the 29th International Conference on Computational Linguistics, Gyeongju, Oct 12-17, 2022. Stroudsburg: ACL, 2022: 2494-2503. [62] LIANG Y, ZHAO S, CHENG B, et al. Tackling solitary entities for few-shot knowledge graph completion[C]//LNCS 13368: Proceedings of the 15th International Conference on Knowledge Science, Engineering and Management, Singapore, Aug 6-8, 2022. Cham: Springer, 2022: 227-239. [63] DU Z J. Zero or few shot knowledge graph completions by text enhancement with multi-grained attention[C]//Procee-dings of the 33rd IEEE International Conference on Tools with Artificial Intelligence, Washington, Nov 1-3, 2021. Piscataway: IEEE, 2021: 1050-1058. [64] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Mat-ching networks for one shot learning[C]//Advances in Neural Information Processing Systems 29, Barcelona, Dec 5-10, 2016: 3630-3638. [65] WANG Q, HUANG P P, WANG H F, et al. CoKE: contextu-alized knowledge graph embedding[J]. arXiv:1911.02168, 2019. [66] LUO A J, ZHAO P P, LIU Y C, et al. Adaptive attention-aware gated recurrent unit for sequential recommendation[C]//LNCS 11447: Proceedings of the 24th International Conference on Database Systems for Advanced Applica-tions, Chiang Mai, Api 22-25, 2019. Cham: Springer, 2019: 317-332. [67] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Proces-sing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008. [68] HUISMAN M, VAN RIJN J N, PLAAT A. A survey of deep meta-learning[J]. Artificial Intelligence Review, 2021, 54(6): 4483-4541. [69] SUN Q, LIU Y, CHUA T S, et al. Meta-transfer learning for few-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 403-412. [70] LADOSZ P, WENG L, KIM M, et al. Exploration in deep reinforcement learning: a survey[J]. Information Fusion, 2022, 85: 1-22. [71] NATHANI D, CHAUHAN J, SHARMA C, et al. Learning attention-based embeddings for relation prediction in know-ledge graphs[C]//Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Jul 28-Aug 2, 2019. Stroudsburg: ACL, 2019: 4710-4723. [72] WANG Z, ZHANG J W, FENG J L, et al. Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence, Québec, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1112-1119. [73] WU Z, PAN S, CHEN F, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Net-works and Learning Systems, 2020, 32(1): 4-24. [74] SLOMAN S A. The empirical case for two systems of rea-soning[J]. Psychological Bulletin, 1996, 119(1): 3. [75] 岳增营, 叶霞, 刘睿珩. 基于语言模型的预训练技术研究综述[J]. 中文信息学报, 2021, 35(9): 15-29. YUE Z Y, YE X, LIU R H. A survey of language model based pre-training technology[J]. Journal of Chinese Infor-mation Processing, 2021, 35(9): 15-29. [76] SHU Y, CAO Z J, LONG M S, et al. Transferable curricu-lum for weakly-supervised domain adaptation[C]//Procee-dings of the 33rd AAAI Conference on Artificial Intelli-gence, the 31st Innovative Applications of Artificial Inte-lligence Conference, the 9th AAAI Symposium on Educa-tional Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 4951-4958. [77] BODENREIDER O. The unified medical language system (UMLS): integrating biomedical terminology[J]. Nucleic Acids Research, 2004, 32(S1): D267-D270. [78] MILLER G A. Wordnet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41. [79] BOLLACKER K, EVANS C, PARITOSH P, et al. Freebase: a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD Inter-national Conference on Management of Data, Vancouver, Jun 9-12, 2008. New York: ACM, 2008: 1247-1250. [80] BORDES A, GLOROT X, WESTON J, et al. A semantic matching energy function for learning with multi-relational data[J]. Machine Learning, 2014, 94(2): 233-259. [81] 张子辰, 岳昆, 祁志卫, 等. 时序知识图谱的增量构建[J]. 计算机科学与探索, 2022, 16(3): 598-607. ZHANG Z C, YUE K, QI Z W, et al. Incremental cons-truction of time-series knowledge graph[J]. Journal of Fron-tiers of Computer Science and Technology, 2022, 16(3): 598-607. [82] MIRTAHERI M, ROSTAMI M, REN X, et al. One-shot lear-ning for temporal knowledge graphs[J]. arXiv:2010.12144, 2020. [83] BAI L Y, ZHANG M C, ZHANG H, et al. FTMF: few-shot temporal knowledge graph completion based on meta-optimization and fault-tolerant mechanism[J]. World Wide Web, 2023, 26(3): 1243-1270. [84] GARCíA-DURáN A, DUMAN?I? S, NIEPERT M. Lear-ning sequence encoders for temporal knowledge graph com-pletion[C]//Proceedings of the 2018 Conference on Empi-rical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Stroudsburg: ACL, 2018: 4816-4821. [85] 张鲁宁, 左信, 刘建伟. 零样本学习研究进展[J]. 自动化学报, 2020, 46(1): 1-23. ZHANG L N, ZUO X, LIU J W. Research and development of zero-shot learning[J]. Acta Automatica Sinica, 2020, 46(1): 1-23. [86] WANG X L, YE Y F, GUPTA A. Zero-shot recognition via semantic embeddings and knowledge graphs[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 6857-6866. [87] GHOSH P, SAINI N, DAVIS L S, et al. All about know-ledge graphs for actions[J]. arXiv:2008.12432, 2020. [88] GENG Y X, CHEN J Y, CHEN Z, et al. OntoZSL: ontology-enhanced zero-shot learning[C]//Proceedings of the Web Conference 2021, Ljubljana, Apr 19-23, 2021. New York: ACM, 2021: 3325-3336. [89] CORNELL F, ZHANG C, KARLGREN J, et al. Challenging the assumption of structure-based embeddings in few-and zero-shot knowledge graph completion[C]//Proceedings of the 13th Language Resources and Evaluation Conference, Marseille, Jun 20-25, 2022. Stroudsburg: ACL, 2022: 6300-6309. |
[1] | 李智杰, 韩瑞瑞, 李昌华, 张颉, 石昊琦. 融合预训练模型和注意力的实体关系抽取方法[J]. 计算机科学与探索, 2023, 17(6): 1453-1462. |
[2] | 赵晔辉, 柳林, 王海龙, 韩海燕, 裴冬梅. 知识图谱推荐系统研究综述[J]. 计算机科学与探索, 2023, 17(4): 771-791. |
[3] | 韩虎, 郝俊, 张千锟, 孟甜甜. 知识增强的交互注意力方面级情感分析模型[J]. 计算机科学与探索, 2023, 17(3): 709-718. |
[4] | 尹华, 肖石冉, 陈智全, 胡振生, 龙泳潮. 多语义关系嵌入的知识图谱补全方法[J]. 计算机科学与探索, 2023, 17(2): 467-477. |
[5] | 马力, 姚伟凡. 结合关系路径与有向子图推理的链接预测方法[J]. 计算机科学与探索, 2023, 17(2): 478-488. |
[6] | 孙水发, 李小龙, 李伟生, 雷大江, 李思慧, 杨柳, 吴义熔. 图神经网络应用于知识图谱推理的研究综述[J]. 计算机科学与探索, 2023, 17(1): 27-52. |
[7] | 高仰, 刘渊. 融合社交关系和知识图谱的推荐算法[J]. 计算机科学与探索, 2023, 17(1): 238-250. |
[8] | 萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8): 1727-1741. |
[9] | 田萱, 陈杭雪. 推荐任务中知识图谱嵌入应用研究综述[J]. 计算机科学与探索, 2022, 16(8): 1681-1705. |
[10] | 于慧琳, 陈炜, 王琪, 高建伟, 万怀宇. 使用子图推理实现知识图谱关系预测[J]. 计算机科学与探索, 2022, 16(8): 1800-1808. |
[11] | 韩毅, 乔林波, 李东升, 廖湘科. 知识增强型预训练语言模型综述[J]. 计算机科学与探索, 2022, 16(7): 1439-1461. |
[12] | 郭晓旺, 夏鸿斌, 刘渊. 融合知识图谱与图卷积网络的混合推荐模型[J]. 计算机科学与探索, 2022, 16(6): 1343-1353. |
[13] | 董文波, 孙仕亮, 殷敏智. 医学知识推理研究现状与发展[J]. 计算机科学与探索, 2022, 16(6): 1193-1213. |
[14] | 王宝亮, 潘文采. 基于知识图谱的双端邻居信息融合推荐算法[J]. 计算机科学与探索, 2022, 16(6): 1354-1361. |
[15] | 张子辰, 岳昆, 祁志卫, 段亮. 时序知识图谱的增量构建[J]. 计算机科学与探索, 2022, 16(3): 598-607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||