[1] PAN S J, YANG Q. A survey on transfer learning[J].?IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[2] ZHU X. Semi-supervised learning literature survey[R]. Madi-son: University of Wisconsin-Madison, 2005.
[3] LIU W, WANG J, CHANG S F. Robust and scalable graph-based semi-supervised learning[J]. Proceedings of the IEEE, 2012, 100(9): 2624-2638.
[4] ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]//Advances in Neural Infor-mation Processing Systems 16, Vancouver, Dec 8-13, 2003.Cambridge: MIT Press, 2003: 321-328.
[5] MIKHAIL B, PARTHA N, VIKAS S. Manifold regulariza-tion: a geometric framework for learning from labeled and unlabeled examples[J]. The Journal of Machine Learning Res-earch, 2006, 7(1): 2399-2434.
[6] MIKHAIL B, PARTHA N. Laplacian eigenmaps and spectral techniques for embedding and clustering[C]//Advances in Neural Information Processing Systems 14, Vancouver, Dec 3-8, 2001. Cambridge: MIT Press, 2001: 585-591.
[7] TENENBAUM J B, SILVA V D, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduc-tion[J].Science, 2000, 290(500): 2319-2323.
[8] CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learning[J]. IEEE Transactions on Neural Networks, 2009, 20(3): 542.
[9] ZHU X, GOLBDERG A. Introduction to semi-supervised learning[M]. San Rafael: Morgan & Claypool Publishers, 2009.
[10] WANG Y Y, CHEN S C, ZHOU Z H. New semi-supervised classification method based on modified cluster assumption[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(5): 689-702.
[11] KRISHNAPURAM R, KELLER J M. A possibilistic app-roach to clustering[J]. IEEE Transations on Fuzzy Systems, 1993, 1(2): 98-110.
[12] 但雨芳, 陶剑文, 徐浩特. 可能性聚类假设的半监督分类方法[J].?计算机工程与应用,?2020, 56(9): 65-74.
DAN Y F, TAO J W, XU H T. Semi-supervised classifi-cation method of possibilistic clustering assumption[J]. Com-puter Engineering and Applications, 2020, 56(9): 65-74.
[13] WANG Y Y, CHEN S C. Safety-aware semi-supervised classification[J]. IEEE Transactions on Neural Networks and Learning Systems,2013, 24(11): 1763-1772.
[14] PATEL V M, GOPALAN R, LI R , et al. Visual domain adap-tation: a survey of recent advances[J]. IEEE Signal Proces-sing Magazine, 2015, 32(3): 53-69.
[15] DAN Y F, TAO J W, FU J J, et al. Possibilistic clustering-promoting semi-supervised learning for EEG-based emotion recognition[J]. Frontiers in Neuroscience, 2021, 15: 690044.
[16] TAO J W, DAN Y F. Multi-source co-adaptation for EEG-based emotion recognition by mining correlation informa-tion[J]. Frontiers in Neuroscience, 2021, 15: 677106.
[17] DAN Y F, TAO J W, ZHOU D. Robust multi-source co-adaptation with adaptive loss minimization[J]. Signal Proce-ssing: Image Communication, 2021(5): 116455.
[18] BRUZZONE L, MARCONCINI M. Domain adaptation pro-blems: a DASVM classification technique and a circular validation strategy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787.
[19] XUE H, CHEN S C. Alternative robust local embedding[C]//Proceedings of the 2007 International Conference on Wave-let Analysis and Pattern Recognition, Beijing, Nov 2-4, 2007. Piscataway: IEEE, 2007: 591-596.
[20] BOTTOU L, VAPNIK V. Local learning algorithms[J]. Neural Computation, 1992, 4(6): 888-900.
[21] ATKESON C G,MOORE A W. SCHAAL S. Locally weig-hted learning[J]. Artificial Intelligence Review, 1997, 11: 11-73.
[22] KRISHNAPURAM R,KELLER J M. The possibilistic C-means algorithm: insights and recommendations[J]. IEEE Transactions on Fuzzy Systems, 1996, 4: 385-393.
[23] BELKIN M, NIYOGI P, SINDHWANI V. Manifold regula-rization: a geometric framework for learning from examples[J]. Journal of Machine Learning Research, 2006, 7: 23992434.
[24] MASAYUKI K,?HIROSHI M. Multiple graph label propa-gation by sparse integration[J]. IEEE Transactions on Neural Networks and Learning Systems, 2013, 24(12): 1999-2012.
[25] GENG B, TAO D, XU C, et al. Ensemble manifold regulari-zation[J]. IEEE Transactions on Pattern Analysis and Mac-hine Intelligence, 2012, 34(6): 1227-1233.
[26] GRIFFIN G, HOLUB A, PERONA P. Caltech-256 object category dataset: technical report 7694[R]. California Institute of Technology, 2007.
[27] KULIS B, SAENKO K, DARRELL T. What you saw is not what you get: domain adaptation using asymmetric kernel transforms[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, Jun 20-25, 2011. Washington: IEEE Computer Society, 2011: 1785-1792.
[28] CHUA T S, TANG J H, HONG R C, et al. NUS-WIDE: a real-world web image database from National University of Singapore[C]//Proceedings of the 8th ACM International Conference on Image and Video Retrieval, Santorini Island, Jul 8-10, 2009. New York: ACM, 2009: 368-375.
[29] YANG J, YAN R, HAUPTMANN A G. Cross-domain video concept detection using adaptive SVMs[C]//Proceedings of the 15th International Conference on Multimedia, Augsburg, Sep 24-29, 2007. New York: ACM, 2007: 188-197.
[30] GEHLER P V, NOWOZIN S. On feature combination for multiclass object classification[C]//Proceedings of the IEEE 12th International Conference on Computer Vision, Kyoto,Sep 27-Oct 4, 2009. Washington: IEEE Computer Society, 2009: 221-228.
[31] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[32] TOMMASI T, ORABONA F, CAPUTO B. Learning cate-gories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Mac-hine Intelligence, 2014, 36(5): 928-941.
[33] DUAN L, TSANG I W, XU D. Domain transfer multiple kernel learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479.
[34] LONG M, WANG J, DING G, et al. Adaptation regulariz-ation: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
[35] DUAN L, XU D, TSANG I W. Domain adaptation from multiple sources: a domain-dependent regularization appro-ach[J]. IEEE Transactions on Neural Networks & Learning Systems, 2012, 23(3): 504-518.
[36] DUAN L X, XU D, CHANG S F. Exploiting web images for event recognition in consumer videos: a multiple source domain adaptation approach[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 1338-1345.
[37] HOU C P, NIE F P, TAO H, et al. Multi-view unsupervised feature selection with adaptive similarity and view weight[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(9): 1998-2011.
[38] TAO J W, ZHOU D, LIU F Y, et al. Latent multi-feature co-regression for visual recognition by discriminatively levera-ging multi-source models[J]. Pattern Recognition, 2019, 87: 296-316.
[39] LONG M S, WANG J. Learning transferable features with deep adaptation networks[J]. arXiv:1502.02791, 2015.
[40] ZHAO Y, SHEN Y, BERNARD A, et al. Evaluation and comparison of current biopsy needle localization and trac-king methods using 3D ultrasound[J]. Ultrasonics, 2017, 73: 206-220.
[41] ZHAO Y, LIEBGOTT H, CACHARD C. Comparison of the existing tool localization methods on two-dimensional ultra-sound images and their tracking results[J]. Control Theory & Applications, 2015, 9(7): 1124-1134.
[42] FU J J, TAO J W. Robust multi-model adaptation regression with local feature space representation[J]. Knowledge-Based Systems, 2019, 174: 160-176.
[43] ROSENSTEIN M T, MARX Z, KAELBLING L P. To trans-fer or not to transfer[C]//Advances in Neural Information Processing Systems 18, 2005. |