[1] 秦悦, 丁世飞. 半监督聚类综述[J]. 计算机科学, 2019, 46(9): 15-21.
QIN Y, DING S F. Survey of semi-supervised clustering[J]. Computer Science, 2019, 46(9): 15-21.
[2] ZHOU D Y, BOUSQUET O, LAL T N, et al. Learning with local and global consistency[C]//Advances in Neural Information Processing Systems 16, Vancouver and Whistler, Dec 8-13, 2003. Cambridge: MIT Press, 2004: 321-328.
[3] BASU S, BANERJEE A, MOONEY R J. Semi-supervised clustering by seeding[C]//Proceedings of the 19th International Conference on Machine Learning, Sydney, Jul 8-12, 2002. San Mateo: Morgan Kaufmann, 2002: 27-34.
[4] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, Jun 21-Jul 18, 1965, Dec 27, 1965-Jan 7, 1966. Berkeley: University of California, 1967: 281-297.
[5] HARTIGAN J A, WONG M A. Algorithm AS 136: a k-means clustering algorithm[J]. Journal of the Royal Statistical Society, Series C (Applied Statistics), 1979, 28(1): 100-108.
[6] LI X, YIN H, ZHOU K, et al. Semi-supervised clustering with deep metric learning and graph embedding[J]. World Wide Web: Internet and Web Information Systems, 2020, 23(2): 781-798.
[7] WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained K-means clustering with background knowledge[C]//Proceedings of the 18th International Conference on Machine Learning, Williamstown, Jun 28-Jul 1, 2001. San Mateo: Morgan Kaufmann, 2001: 577-584.
[8] WEI S, LI Z, ZHANG C. Combined constraint-based with metric-based in semi-supervised clustering ensemble[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(7): 1085-1100.
[9] MASUD M A, HUANG J M, MHONG M, et al. Generate pairwise constraints from unlabeled data for semi-supervised clustering[J]. Data & Knowledge Engineering, 2019, 123: 101715.
[10] MEI J P, LV H J, CAO J W, et al. Pairwise constrained fuzzy clustering: relation, comparison and parallelization[J]. International Journal of Fuzzy Systems, 2019, 21(6): 1938-1949.
[11] FOGEL S, AVERBUCH-ELOR H, COHEN-OR D, et al. Clustering-driven deep embedding with pairwise constraints[J]. IEEE Computer Graphics and Applications, 2019, 39(4): 16-27.
[12] YANG X, DENG C, ZHENG F, et al. Deep spectral clustering using dual autoencoder network[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4066-4075.
[13] LV J, KANG Z, LU X, et al. Pseudo-supervised deep subspace clustering[J]. IEEE Transactions on Image Processing, 2021, 30: 5252-5263.
[14] LI Y F, HU P, LIU Z, et al. Contrastive clustering[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 31st Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 8547-8555.
[15] PADMASUNDARI S B. Intent discovery through unsupervised semantic text clustering[C]//Proceedings of the 19th Annual Conference of the International Speech Communication Association, Hyderabad, Sep 2-6, 2018: 606-610.
[16] LIN T E, XU H, ZHANG H. Discovering new intents via constrained deep adaptive clustering with cluster refinement[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 8360-8367.
[17] VEDULA N, LIPKA N, MANERIKER P, et al. Open intent extraction from natural language interactions[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020. New York: ACM, 2020: 2009-2020.
[18] LIU P, NING Y, WU K K, et al. Open intent discovery through unsupervised semantic clustering and dependency parsing[J]. arXiv:2104.12114, 2021.
[19] CANDèS E J, RECHT B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772.
[20] MA S, GOLDFARB D, CHEN L. Fixed point and Bregman iterative methods for matrix rank minimization[J]. Mathematical Programming, 2011, 128(1): 321-353.
[21] 史加荣, 郑秀云, 周水生. 矩阵补全算法研究进展[J]. 计算机科学, 2014, 41(4): 13-20.
SHI J R, ZHENG X Y, ZHOU S S. Research progress in matrix completion algorithms[J]. Computer Science, 2014, 41(4): 13-20.
[22] 陈蕾, 陈松灿. 矩阵补全模型及其算法研究综述[J]. 软件学报, 2017, 28(6): 1547-1564.
CHEN L, CHEN S C. Survey on matrix completion models and algorithms[J]. Journal of Software, 2017, 28(6): 1547-1564.
[23] GáLVEZ-LóPEZ D, TARDóS J D. Real-time loop detection with bags of binary words[C]//Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, Sep 25-30, 2011. Piscataway: IEEE, 2011: 51-58.
[24] ZHANG D H, BACLAWSKI K P, TSOTRAS V, et al. Encyclopedia of database systems[M]. Berlin, Heidelberg: Springer, 2009.
[25] ACKLEY D H, HINTON G E, SEJNOWSKI T J. A learning algorithm for Boltzmann machines[J]. Cognitive Science, 1985, 9(1): 147-169.
[26] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605.
[27] MALININ A, GALES M. Reverse KL-divergence training of prior networks: improved uncertainty and adversarial robustness[C]//Proceedings of the Annual Conference on Neural Information Processing Systems 2019, Vancouver, Dec 8-14, 2019: 14520-14531.
[28] XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 478-487.
[29] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. The Journal of Machine Learning Research, 2003, 3: 993-1022.
[30] KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 3.
[31] WANG W, HUANG Y, WANG Y, et al. Generalized autoencoder: a neural network framework for dimensionality reduction[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 496-503.
[32] KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016.
[33] GUO X F, GAO L, LIU X W, et al. Improved deep embedded clustering with local structure preservation[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 1753-1759. |