[1] DU Z, WANG X, YANG H, et al. Sequential scenario-specific meta learner for online recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 2895-2904.
[2] PANZARASA P, OPSAHL T, CARLEY K M. Patterns and dynamics of users?? behavior and interaction: network analysis of an online community[J]. Journal of the American Society for Information Science and Technology, 2009, 60(5): 911-932.
[3] LESKOVEC J, KLEINBERG J, FALOUTSOS C. Graphs over time: densification laws, shrinking diameters and possible explanations[C]//Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, Aug 21-24, 2005. New York: ACM, 2005: 177-187.
[4] GILMER J, SCHOENHOLZ S S, RILEY P F, et al. Neural message passing for quantum chemistry[C]//Proceedings of the 2017 International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1263-1272.
[5] PAREJA A, DOMENICONI G, CHEN J, et al. EvolveGCN: evolving graph convolutional networks for dynamic graphs[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 5363-5370.
[6] SANKAR A, WU Y, GOU L, et al. DySAT: deep neural representation learning on dynamic graphs via self-attention networks[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020. New York: ACM, 2020: 519-527.
[7] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[8] SEO Y, DEFFERRARD M, VANDERGHEYNST P, et al. Structured sequence modeling with graph convolutional recurrent networks[C]//Proceedings of the 25th International Conference on Neural Information Processing, Siem Reap, Dec 13-16, 2018. Cham: Springer, 2018: 362-373.
[9] NGUYEN G H, LEE J B, ROSSI R A, et al. Continuous-time dynamic network embeddings[C]//Companion of the Web Conference 2018, Lyon, Apr 23-27, 2018. New York: ACM, 2018: 969-976.
[10] XU D, RUAN C, KORPEOGLU E, et al. Inductive representation learning on temporal graphs[C]//Proceedings of the 8th International Conference on Learning Representations, Addis Ababa, Apr 26-30, 2020.
[11] WANG Y, CHANG Y Y, LIU Y, et al. Inductive representation learning in temporal networks via causal anonymous walks[C]//Proceedings of the 9th International Conference on Learning Representations, Vienna, May 3-7, 2021.
[12] ZUO Y, LIU G, LIN H, et al. Embedding temporal network via neighborhood formation[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 2857-2866.
[13] 朱小虎, 宋文军, 王崇骏,等. 用于社团发现的Girvan-Newman改进算法[J]. 计算机科学与探索, 2010, 4(12): 1101-1108.
ZHU X H, SONG W J, WANG C J, et al. Improved algorithm based on Girvan-Newman algorithm for community detection[J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(12): 1101-1108.
[14] 陈洁, 张二明, 王倩倩,等. K阶图卷积属性网络社团检测方法[J]. 计算机科学与探索, 2022, 16(12): 2788-2796.
CHEN J, ZHANG E M, WANG Q Q, et al. Method of K-order graph convolution attribute network community detection[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2788-2796.
[15] LI T, WANG W, JIAO P, et al. Exploring temporal community structure via network embedding[J]. IEEE Transactions on Cybernetics, 2023, 53(11): 7021-7033.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//Proceedings of the 5th International Conference on Learning Representations, Toulon, Apr 24-26, 2017.
[18] ZHOU L, YANG Y, REN X, et al. Dynamic network embedding by modeling triadic closure process[C]//Proceedings of the 2018 AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Palo Alto: AAAI Press, 2018: 571-578.
[19] YOU J, DU T, LESKOVEC J. ROLAND: graph learning framework for dynamic graphs[C]//Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, Aug 14-18, 2022. New York: ACM, 2022: 2358-2366.
[20] WEN Z, FANG Y. TREND: temporal event and node dynamics for graph representation learning[C]//Proceedings of the ACM Web Conference 2022, Lyon, Apr 25-29, 2022. New York: ACM, 2022: 1159-1169.
[21] PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[22] SOUZA A, MESQUITA D, KASKI S, et al. Provably expressive temporal graph networks[C]//Proceedings of the 36th Conference on Neural Information Processing Systems, Nov 28-Dec 5, 2022: 32257-32269.
[23] XU K, HU W, LESKOVEC J, et al. How powerful are graph neural networks?[C]//Proceedings of the 11th International Conference on Learning Representations, May 6-9, 2019.
[24] HAWKES A G. Spectra of some self-exciting and mutually exciting point processes[J]. Biometrika, 1971, 58(1): 83-90.
[25] LU Y, WANG X, SHI C, et al. Temporal network embedding with micro-and macro-dynamics[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 469-478.
[26] YIN H, BENSON A R, LESKOVEC J, et al. Local higher-order graph clustering[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 555-564.
[27] LI Y, SHEN Y, CHEN L, et al. Zebra: when temporal graph neural networks meet temporal personalized PageRank[J]. Proceedings of the VLDB Endowment, 2023, 16(6): 1332-1345.
[28] VELI?KOVI? P, FEDUS W, HAMILTON W L, et al. Deep graph infomax[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019.
[29] KUMAR S, ZHANG X, LESKOVEC J. Predicting dynamic embedding trajectory in temporal interaction networks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Anchorage, Aug 4-8, 2019. New York: ACM, 2019: 1269-1278.
[30] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. New York: ACM, 2017: 30.
[31] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]//Proceedings of the 2013 International Conference on Neural Information Processing Systems, Lake Tahoe, Dec 5-8, 2013. New York: ACM, 2013: 3111-3119.
[32] KINGMA D P,?BA J. Adam: a method for stochastic optimization[C]//Proceedings of the 3th International Conference on Learning Representations, San Diego, May 7-9, 2015. |