[1] DING K Z, LI J D, BHANUSHALI R, et al. Deep anomaly detection on attributed networks[C]//Proceedings of the 2019 SIAM International Conference on Data Mining, Calgary, May 2-4, 2019: 594-602.
[2] LIU Z Q, CHEN C C, YANG X X, et al. Heterogeneous graph neural networks for malicious account detection[C]//Proceed-ings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 2077-2085.
[3] DUAN J C, WANG S W, LIU X W, et al. GADMSL: graph anomaly detection on attributed networks via multi-scale substructure learning[EB/OL]. [2023-06-14]. https://arxiv.org/abs/2211.15255.
[4] LIU K, DOU Y T, ZHAO Y, et al. BOND: benchmarking unsupervised outlier node detection on static attributed graphs[C]//Advances in Neural Information Processing Systems 36, New Orleans, Nov 29-Dec 1, 2022: 27021-27035.
[5] CHENG D W, WANG X Y, ZHANG Y, et al. Graph neural network for fraud detection via spatial-temporal attention[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3800-3813.
[6] WANG S Q, ZENG Y J, LIU X W, et al. Effective end-to-end unsupervised outlier detection via inlier priority of discriminative network[C]//Advances in Neural Information Processing Systems 33, Vancouver, Dec 10-12, 2019: 5960-5973.
[7] YU G, WANG S Q, CAI Z P, et al. Deep anomaly discovery from unlabeled videos via normality advantage and self-paced refinement[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 13987-13998.
[8] LIANG J Q, JACOBS P, SUN J K, et al. Semi-supervised embedding in attributed networks with outliers[C]//Proceedings of the 2018 SIAM International Conference on Data Mining, California, May 3-5, 2018: 153-161.
[9] WANG D X, LIN J B, CUI P, et al. A semi-supervised graph attentive network for financial fraud detection[C]//Proceedings of the 2019 IEEE International Conference on Data Mining, Beijing, Nov 8-11, 2019. Piscataway: IEEE, 2019: 598-607.
[10] KUMAGAI A, IWATA T, FUJIWARA Y. Semi-supervised anomaly detection on attributed graphs[C]//Proceedings of the 2021 International Joint Conference on Neural Networks, Shenzhen, Jul 18-22, 2021. Piscataway: IEEE, 2021: 1-8.
[11] CHEN Y Q, ZHOU X, HUANG T S. One-class SVM for lear-ning in image retrieval[C]//Proceedings of the 2001 International Conference on Image Processing, Thessaloniki, Oct 7-10, 2001. Piscataway: IEEE, 2001: 34-37.
[12] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Texas, May 16-18, 2000. New York: ACM, 2000: 93-104.
[13] PENG Z, LUO M N, LI J D, et al. ANOMALOUS: a joint modeling approach for anomaly detection on attributed networks[C]//Proceedings of the 2018 International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3513-3519.
[14] PEROZZI B, AKOGLU L. Scalable anomaly ranking of attributed neighborhoods[C]//Proceedings of the 2016 International Conference on Data Mining, Barcelona, Dec 12-15, 2016: 207-215.
[15] YUAN X, ZHOU N, YU S, et al. Higher-order structure based anomaly detection on attributed networks[C]//Proceedings of the 2021 IEEE International Conference on Big Data, Dec 15-18, 2021. Piscataway: IEEE, 2021: 2691-2700.
[16] LIU Y X, LI Z, PAN S, et al. Anomaly detection on attributed networks via contrastive self-supervised learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2378-2392.
[17] JIN M, LIU Y X, ZHENG Y, et al. ANEMONE: graph anomaly detection with multi-scale contrastive learning[C]//Proceedings of the 2021 ACM International Conference on Information & Knowledge Management 30, Nov 1-5, 2021. New York: ACM, 2021: 3122-3126.
[18] ZHENG Y, JIN M, LIU Y X, et al. Generative and contrastive self-supervised learning for graph anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12220-12233.
[19] ZHANG J Q, WANG S Z, CHEN S C. Reconstruction enhanced multi-view contrastive learning for anomaly detection on attributed networks[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 2376-2382.
[20] AGGARWAL C C, YU P S. Outlier detection for high dimensional data[C]//Proceedings of the 2001 ACM SIGMOD International Conference on Management of Data, Santa Barbara, May 21-24, 2001. New York: ACM, 2001: 37-46.
[21] CHANDOLA V, BANERJEE A, KUMAR V. Anomaly detec-tion: a survey[J]. ACM Computing Surveys, 2009, 41(3): 1-58.
[22] HASELMANN M, GRUBER D P, TABATABAI P. Anomaly detection using deep learning based image completion[C]//Proceedings of the 17th IEEE International Conference on Machine Learning and Applications, Orlando, Dec 17-20, 2018. Piscataway: IEEE, 2018: 1237-1242.
[23] LIAO Q, CHAI H Y, HAN H, et al. An integrated multi-task model for fake news detection[J]. IEEE Transactions on Know-ledge and Data Engineering, 2021, 34(11): 5154-5165.
[24] DING K Z, LI J D, LIU H. Interactive anomaly detection on attributed networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, Melbourne, Feb 11-15, 2019. New York: ACM, 2019: 357-365.
[25] DUAN J C, WANG S W, ZHANG P, et al. Graph anomaly detection via multi-scale contrastive learning networks with augmented view[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, Feb 7-14, 2023.Menlo Park: AAAI, 2023: 7459-7467.
[26] MA X X, WU J, XUE S, et al. A comprehensive survey on graph anomaly detection with deep learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12012-12038.
[27] AKOGLU L, TONG H H, KOUTRA D. Graph based anomaly detection and description: a survey[J]. Data Mining and Knowledge Discovery, 2015, 29(3): 626-688.
[28] GOODGE A, HOOI B, NG S K, et al. LUNAR: unifying local outlier detection methods via graph neural networks[C]// Proceedings of the 2022 AAAI Conference on Artificial Intelligence, Vancouver, Feb 22-Mar 1, 2022. Menlo Park: AAAI, 2022: 6737-6745.
[29] LIU J Y, XIA F, FENG X, et al. Deep graph learning for anomalous citation detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(6): 2543-2557.
[30] DING K Z, SHU K, SHAN X, et al. Cross-domain graph anomaly detection[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2406-2415.
[31] ZHAO T, JIANG T W, SHAH N, et al. A synergistic approach for graph anomaly detection with pattern mining and feature learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(6): 2393-2405.
[32] SU X, XUE S, LIU F Z, et al. A comprehensive survey on community detection with deep learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4682-4702.
[33] LI J D, DANI H, HU X, et al. Radar: residual analysis for anomaly detection in attributed networks[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2152-2158.
[34] BANDYOPADHYAY S, LOKESH N, VIVEK S V, et al. Outlier resistant unsupervised deep architectures for attributed network embedding[C]//Proceedings of the 13th International Conference on Web Search and Data Mining, Houston, Feb 3-7, 2020: 25-33.
[35] LI Y N, HUANG X, LI J D, et al. SpecAE: spectral autoencoder for anomaly detection in attributed networks[C]//Proceedings of the 28th ACM International Conference on Information and knowledge Management, Beijing, Nov 3-7, 2019. New York: ACM, 2019: 2233-2236.
[36] WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 32(1): 4-24.
[37] TU W X, ZHOU S H, LIU X W, et al. Initializing then refining: a simple graph attribute imputation network[C]//Procee-dings of the 31st International Joint Conference on Artificial Intelligence, Vienna, Jul 23-29, 2022: 3494-3500.
[38] ZHANG Z W, CUI P, ZHU W W. Deep learning on graphs: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(1): 249-270.
[39] SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2008, 20(1): 61-80.
[40] GRATTAROLA D, ZAMBON D, BIANCHI F M, et al. Under-standing pooling in graph neural networks[J]. IEEE Tran-sactions on Neural Networks and Learning Systems, 2024,35(2): 2708-2718.
[41] LIU X, ZHANG F J, HOU Z Y, et al. Self-supervised learning: generative or contrastive[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 857-876.
[42] LIU Y, YANG X H, ZHOU S H, et al. Hard sample aware net-work for contrastive deep graph clustering[C]//Proceedings of the 37th AAAI Conference on Artificial Intelligence, Washington, Feb 7-14, 2022. Menlo Park: AAAI, 2022: 8914-8922.
[43] LIU Y X, JIN M, PAN S R, et al. Graph self-supervised learning: a survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6): 5879-5900.
[44] WU M, PAN S R, ZHOU C, et al. Unsupervised domain adaptive graph convolutional networks[C]//Proceedings of the Web Conference 2020, Taipei, China, Apr 20-24, 2020: 1457-1467.
[45] HE D X, LIANG C D, HUO C Y, et al. Analyzing heterogeneous networks with missing attributes by unsupervised contrastive learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4438-4450.
[46] WANG Z H, LI Z, LI X Y, et al. Graph-based contrastive learning for description and detection of local features[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(4): 4839-4851.
[47] QIU J Z, CHEN Q B, DONG Y X, et al. GCC: graph contrastive coding for graph neural network pre-training[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 1150-1160.
[48] YOU Y N, CHEN T L, SUI Y D, et al. Graph contrastive learning with augmentations[C]//Advances in Neural Information Processing Systems 33, Vancouver, Dec 6-12, 2020: 5812-5823.
[49] HASSANI K, KHASAHMADI A H. Contrastive multi-view representation learning on graphs[C]//Proceedings of the 2020 International Conference on Machine Learning, Vienna, Jul 13-18, 2020: 4116-4126.
[50] ZHU Y Q, XU Y C, YU F, et al. Graph contrastive learning with adaptive augmentation[C]//Proceedings of the Web Con-ference 2021, Apr 19-23, 2021: 2069-2080.
[51] GRILL J B, STRUB F, ALTCHE F, et al. Bootstrap your own latent a new approach to self-supervised learning[C]//Advances in Neural Information Processing Systems 33, Vancouver, Dec 6-12, 2020: 21271-21284.
[52] ZBONTAR J, JING L, MISRA I, et al. Barlow twins: self-supervised learning via redundancy reduction[C]//Proceedings of the 2021 International Conference on Machine Lear-ning, Vienna, Jul 18-24, 2021: 12310-12320.
[53] BRUNA J, ZAREMBA W, SZLAM A, et al. Spectral networks and deep locally connected networks on graphs[C]//Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014.
[54] TANG L, LIU H. Relational learning via latent social dimensions[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2001. New York: ACM, 2001: 817-826.
[55] SEN P, NAMATA G, BILGIC M, et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106.
[56] TANG J, ZHANG J, YAO L M, et al. ArnetMiner: extraction and mining of academic social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Las Vegas, Aug 24-27, 2008. New York: ACM, 2008: 990-998.
[57] SONG X Y, WU M X, JERMAINE C, et al. Conditional anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(5): 631-645. |