计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (11): 2787-2797.DOI: 10.3778/j.issn.1673-9418.2401060
栾添,匡学衡,王维,岳寰宇
出版日期:
2024-11-01
发布日期:
2024-10-31
LUAN Tian, KUANG Xueheng, WANG Wei, YUE Huanyu
Online:
2024-11-01
Published:
2024-10-31
摘要: 当前量子计算作为量子科技的前沿领域,在模拟物理系统方面取得了显著进展,但仍面临硬件噪声、量子误差等技术挑战。综述了量子计算在物理系统模拟中的最新进展,聚焦于量子-经典混合算法和错误缓解技术的应用,探讨其在不同物理系统中的优势与局限性。研究内容包括基于超导量子计算机的分子体系模拟、凝聚态物理系统的多体问题模拟、复杂流体力学系统的方程求解,以及在天体物理与高能物理中的应用。针对分子体系,变分量子算法(VQE)被广泛用于求解多电子体系的基态能量,并通过错误缓解方法提升了模拟的准确性。对于凝聚态物理系统,量子计算在模拟强关联自旋模型方面展现出较高的精度和效率,特别是在更大规模的自旋链模拟中实现了前所未有的精确度。流体力学领域的研究表明,量子-经典混合算法在求解纳维-斯托克斯方程时,能够实现一定程度的加速,为未来的流体动力学研究提供了新的工具。天体物理模拟中,量子计算被用于黑洞和暗物质性质的研究,展示了潜在的指数级加速能力,为理解宇宙中极端条件下的物理现象提供了可能性。在高能物理领域,量子计算在解决施温格模型等问题中表现出良好的应用前景,并初步探索了量子机器学习在高能实验数据分析中的潜力。为量子计算在多领域物理系统模拟的应用提供了全面的视角,指出了未来的发展方向与技术挑战。
栾添, 匡学衡, 王维, 岳寰宇. 量子计算模拟物理系统进展[J]. 计算机科学与探索, 2024, 18(11): 2787-2797.
LUAN Tian, KUANG Xueheng, WANG Wei, YUE Huanyu. Research on Progress of Quantum Computing Simulation of Physical Systems[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(11): 2787-2797.
[1] DAS S, KANUNGO B, SUBRAMANIAN V, et al. Large-scale materials modeling at quantum accuracy: ab initio simulations of quasicrystals and interacting extended defects in metallic alloys[C]//Proceedings of the 2023 International Conference for High Performance Computing, Networking, Storage and Analysis. New York: ACM, 2023: 1-12. [2] CAO S, WU B, CHEN F, et al. Generation of genuine entanglement up to 51 superconducting qubits[J]. Nature, 2023, 619(7971): 738-742. [3] NIU J, ZHANG L, LIU Y, et al. Low-loss interconnects for modular superconducting quantum processors[J]. Nature Electronics, 2023, 6(3): 235-241. [4] NI Z, LI S, DENG X, et al. Beating the break-even point with a discrete-variable-encoded logical qubit[J]. Nature, 2023, 616(7955): 56-60. [5] MOSES S A, BALDWIN C H, ALLMAN M S, et al. A race-track trapped-ion quantum processor[J]. Physical Review X, 2023, 13(4): 041052. [6] MALINOWSKI M, ALLCOCK D T C, BALLANCE C J. How to wire a 1000-qubit trapped-ion quantum computer[J]. PRX Quantum, 2023, 4(4): 040313. [7] HRMO P, WILHELM B, GERSTER L, et al. Native qudit entanglement in a trapped ion quantum processor[J]. Nature Communications, 2023, 14(1): 1-6. [8] WEAVER M J, DUIVESTEIN P, BERNASCONI A C, et al. An integrated microwave-to-optics interface for scalable quantum computing[J]. Nature Nanotechnology, 2024, 19(2): 166-172. [9] SAKAGUCHI A, KONNO S, HANAMURA F, et al. Nonlinear feedforward enabling quantum computation[J]. Nature Communications, 2023,14(1): 3817. [10] EVERED S J, BLUVSTEIN D, KALINOWSKI M, et al. High-fidelity parallel entangling gates on a neutral-atom qua-ntum computer[J]. Nature, 2023, 622(7982): 268-272. [11] GONZáLEZ-CUADRA D, BLUVSTEIN D, KALINOWSKI M, et al. Fermionic quantum processing with programmable neutral atom arrays[J]. Proceedings of the National Acad-emy of Sciences, 2023, 120(35): e2304294120. [12] ARUTE F, ARYA K, BABBUSH R, et al. Quantum supremacy using a programmable superconducting processor[J]. Nature, 2019, 574(7779): 505-510. [13] DENG Y H, GU Y C, LIU H L, et al. Gaussian Boson sampling with pseudo-photon-number-resolving detectors and quantum computational advantage[J]. Physical Review Letters, 2023, 131(15): 150601. [14] SUN Q, ZHANG X, BANERJEE S, et al. Recent developments in the PySCF program package[J]. The Journal of Chemical Physics, 2020, 153(2): 024109. [15] GIANNOZZI P, BASEGGIO O, BONFà P, et al. Quantum ESPRESSO toward the exascale[J]. The Journal of Chemical Physics, 2020, 152(15): 154105. [16] ASPURU-GUZIK A, DUTOI A D, LOVE P J, et al. Simulated quantum computation of molecular energies[J]. Science, 2005, 309(5741): 1704-1707. [17] WHITFIELD J D, BIAMONTE J, ASPURU-GUZIK A. Simulation of electronic structure Hamiltonians using quantum computers[J]. Molecular Physics, 2011, 109(5): 735-750. [18] ABRAMS D S, LLOYD S. Quantum algorithm providing exponential speed increase for finding eigenvalues and eigen-vectors[J]. Physical Review Letters, 1999, 83(24): 5162-5165. [19] LANYON B P, WHITFIELD J D, GILLETT G G, et al. Towards quantum chemistry on a quantum computer[J]. Nature Chemistry, 2010, 2(2): 106-111. [20] O’BRIEN T E, SENJEAN B, SAGASTIZABAL R, et al. Calculating energy derivatives for quantum chemistry on a quantum computer[J]. npj Quantum Information, 2019, 5(1): 1-12. [21] SUGISAKI K, NAKAZAWA S, TOYOTA K, et al. Quantum chemistry on quantum computers: a method for preparation of multiconfigurational wave functions on quantum computers without performing Post-Hartree-Fock calculations[J]. ACS Central Science, 2019, 5(1): 167-175. [22] PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature Communications, 2014, 5(1): 4213. [23] O’MALLEY P J J, BABBUSH R, KIVLICHAN I D, et al. Scalable quantum simulation of molecular energies[J]. Physical Review X, 2016, 6(3): 031007. [24] SHEN Y, ZHANG X, ZHANG S, et al. Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure[J]. Physical Review A, 2017, 95(2): 020501. [25] NAM Y, CHEN J S, PISENTI N C, et al. Ground-state energy estimation of the water molecule on a trapped-ion quantum computer[J]. npj Quantum Information, 2020, 6(1): 1-6. [26] KANDALA A, MEZZACAPO A, TEMME K, et al. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets[J]. Nature, 2017, 549(7671): 242-246. [27] ROBERT A, BARKOUTSOS P K, WOERNER S, et al. Resource-efficient quantum algorithm for protein folding[J]. npj Quantum Information, 2021, 7(1): 1-5. [28] GANZHORN M, EGGER D J, BARKOUTSOS P, et al. Gate-efficient simulation of molecular eigenstates on a quan-tum computer[J]. Physical Review Applied, 2019, 11(4): 044092. [29] Google AI Quantum and Collaborators, ARUTE F, ARYA K, et al. Hartree-Fock on a superconducting qubit quantum computer[J]. Science, 2020, 369(6507): 1084-1089. [30] RICE J E, GUJARATI T P, MOTTA M, et al. Quantum computation of dominant products in lithium-sulfur batteries[J]. The Journal of Chemical Physics, 2021, 154(13): 134115. [31] TAKESHITA T, RUBIN N C, JIANG Z, et al. Increasing the representation accuracy of quantum simulations of che-mistry without extra quantum resources[J]. Physical Review X, 2020, 10(1): 011004. [32] CAI Z, BABBUSH R, BENJAMIN S C, et al. Quantum error mitigation[J]. Reviews of Modern Physics, 2023, 95(4): 045005. [33] TEMME K, BRAVYI S, GAMBETTA J M. Error mitigation for short-depth quantum circuits[J]. Physical Review Letters, 2017, 119(18): 180509. [34] ENDO S, BENJAMIN S C, LI Y. Practical quantum error mitigation for near-future applications[J]. Physical Review X, 2018, 8(3): 031027. [35] KANDALA A, TEMME K, CóRCOLES A D, et al. Error mitigation extends the computational reach of a noisy quantum processor[J]. Nature, 2019, 567(7749): 491-495. [36] STRIKIS A, QIN D, CHEN Y, et al. Learning-based quantum error mitigation[J]. PRX Quantum, 2021, 2(4): 040330. [37] COLLESS J I, RAMASESH V V, DAHLEN D, et al. Computation of molecular spectra on a quantum processor with an error-resilient algorithm[J]. Physical Review X, 2018, 8(1): 011021. [38] XIA R, KAIS S. Quantum machine learning for electronic structure calculations[J]. Nature Communications, 2018, 9(1): 4195. [39] MOTTA M, SUN C, TAN A T K, et al. Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution[J]. Nature Physics, 2020, 16(2): 205-210. [40] GOMES N, ZHANG F, BERTHUSEN N F, et al. Efficient step-merged quantum imaginary time evolution algorithm for quantum chemistry[J/OL]. Journal of Chemical Theory and Computation [2023-11-25]. https://pubs.acs.org/doi/10.1021/acs.jctc.0c00666. [41] SUGISAKI K, SAKAI C, TOYOTA K, et al. Bayesian phase difference estimation: a general quantum algorithm for the direct calculation of energy gaps[J]. Physical Chemistry Chemical Physics, 2021, 23(36): 20152-20162. [42] SMART S E, MAZZIOTTI D A. Quantum solver of contracted eigenvalue equations for scalable molecular simulations on quantum computing devices[J]. Physical Review Letters, 2021, 126(7): 070504. [43] SOKOLOV I O, KL BARKOUTSOS P, MOELLER L, et al. Microcanonical and finite-temperature ab initio molecular dynamics simulations on quantum computers[J]. Physical Review Research, 2021, 3(1): 013125. [44] OLLITRAULT P J, MAZZOLA G, TAVERNELLI I. Nonadiabatic molecular quantum dynamics with quantum computers[J]. Physical Review Letters, 2020, 125(26): 260511. [45] KASSAL I, JORDAN S P, LOVE P J, et al. Polynomial-time quantum algorithm for the simulation of chemical dynamics[J]. Proceedings of the National Academy of Sciences, 2008, 105(48): 18681-18686. [46] VON BURG V, LOW G H, H?NER T, et al. Quantum computing enhanced computational catalysis[J]. Physical Review Research, 2021, 3(3): 033055. [47] HAUKE P, MATTIOTTI G, FACCIOLI P. Dominant reaction pathways by quantum computing[J]. Physical Review Letters, 2021, 126(2): 028104. [48] HUANG B, VON RUDORFF G F, VON LILIENFELD O A. The central role of density functional theory in the AI age[J]. Science, 2023, 381(6654): 170-175. [49] ERPENBECK A, GULL E, COHEN G. Quantum Monte Carlo method in the steady state[J]. Physical Review Letters, 2023, 130(18): 186301. [50] BACKES S, MURAKAMI Y, SAKAI S, et al. Dynamical mean-field theory for the Hubbard-Holstein model on a qua-ntum device[J]. Physical Review B, 2023, 107(16): 165155. [51] CERASOLI F T, SHERBERT K, S?AWI?SKA J, et al. Quantum computation of silicon electronic band structure[J]. Physical Chemistry Chemical Physics, 2020, 22(38): 21816-21822. [52] YU H, ZHAO Y, WEI T C. Simulating large-size quantum spin chains on cloud-based superconducting quantum computers[J]. Physical Review Research, 2023, 5(1): 013183. [53] STANISIC S, BOSSE J L, GAMBETTA F M, et al. Observing ground-state properties of the Fermi-Hubbard model using a scalable algorithm on a quantum computer[J]. Nature Communications, 2022, 13(1): 5743. [54] KIM Y, EDDINS A, ANAND S, et al. Evidence for the utility of quantum computing before fault tolerance[J]. Nature, 2023, 618(7965): 500-505. [55] BABBUSH R, WIEBE N, MCCLEAN J, et al. Low-depth quantum simulation of materials[J]. Physical Review X, 2018, 8(1): 011044. [56] SHERBERT K, JAYARAJ A, BUONGIORNO NARDELLI M. Quantum algorithm for electronic band structures with local tight-binding orbitals[J]. Scientific Reports, 2022, 12(1): 9867. [57] DE SOUZA PIMENTA R C, BEZERRA A T. Revisiting semiconductor bulk hamiltonians using quantum computers[J]. Physica Scripta, 2023, 98(4): 045804. [58] SHERBERT K, CERASOLI F, NARDELLI M B. A systematic variational approach to band theory in a quantum computer[J]. RSC Advances, 2021, 11(62): 39438-39449. [59] URBANEK M, NACHMAN B, PASCUZZI V R, et al. Mitigating depolarizing noise on quantum computers with noise-estimation circuits[J]. Physical Review Letters, 2021, 127(27): 270502. [60] L?TSTEDT E, WANG L, YOSHIDA R, et al. Error-mitigated quantum computing of Heisenberg spin chain dynamics[J]. Physica Scripta, 2023, 98(3): 035111. [61] JIANG Z, SUNG K J, KECHEDZHI K, et al. Quantum algorithms to simulate many-body physics of correlated fermions[J]. Physical Review Applied, 2018, 9(4): 044036. [62] MCCLEAN J R, RUBIN N C, SUNG K J, et al. OpenFermion: the electronic structure package for quantum computers[J]. Quantum Science and Technology, 2020, 5(3): 034014. [63] KYRIIENKO O. Quantum inverse iteration algorithm for programmable quantum simulators[J]. npj Quantum Information, 2020, 6(1): 1-8. [64] LI J, JONES B A, KAIS S. Toward perturbation theory methods on a quantum computer[J]. Science Advances, 2023, 9(19). [65] SUCHSLAND P, KL BARKOUTSOS P, TAVERNELLI I, et al. Simulating a ring-like Hubbard system with a quantum computer[J]. Physical Review Research, 2022, 4(1): 013165. [66] TORNOW S, GEHRKE W, HELMBRECHT U. Non-equilibrium dynamics of a dissipative two-site Hubbard model simulated on IBM quantum computers[J]. Journal of Physics A: Mathematical and Theoretical, 2022, 55(24): 245302. [67] CERVERA-LIERTA A. Exact Ising model simulation on a quantum computer[J]. Quantum, 2018, 2: 114. [68] BASSMAN OFTELIE L, LIU K, KRISHNAMOORTHY A, et al. Towards simulation of the dynamics of materials on quantum computers[J]. Physical Review B, 2020, 101(18): 184305. [69] DBORIN J, WIMALAWEERA V, BARRATT F, et al. Simulating groundstate and dynamical quantum phase transitions on a superconducting quantum computer[J]. Nature Communications, 2022, 13(1): 1-9. [70] TAO Z, YAN T, LIU W, et al. Simulation of a topological phase transition in a Kitaev chain with long-range coupling using a superconducting circuit[J]. Physical Review B, 2020, 101(3): 035109. [71] SMITH A, JOBST B, GREEN A G, et al. Crossing a topological phase transition with a quantum computer[J]. Physical Review Research, 2022, 4(2): L022020. [72] XIAO X, FREERICKS J K, KEMPER A F. Robust measurement of wave function topology on NISQ quantum computers[J]. Quantum, 2023, 7: 987. [73] XIANG Z C, HUANG K, ZHANG Y R, et al. Simulating Chern insulators on a superconducting quantum processor[J]. Nature Communications, 2023, 14(1): 5433. [74] SHI Y H, LIU Y, ZHANG Y R, et al. Quantum simulation of topological zero modes on a 41-qubit superconducting processor[J]. Physical Review Letters, 2023, 131(8): 080401. [75] YAO Y, ZHANG F, WANG C Z, et al. Gutzwiller hybrid quantum-classical computing approach for correlated materials[J]. Physical Review Research, 2021, 3(1): 013184. [76] HUANG B, SHENG N, GOVONI M, et al. Quantum simulations of fermionic Hamiltonians with efficient encoding and ansatz schemes[J]. Journal of Chemical Theory and Computation, 2023, 19(5): 1487-1498. [77] HUANG B, GOVONI M, GALLI G. Simulating the electronic structure of spin defects on quantum computers[J]. PRX Quantum, 2022, 3(1): 010339. [78] GOMES N, WILLIAMS-YOUNG D B, DE JONG W A. Computing the many-body green’s function with adaptive variational quantum dynamics[J]. Journal of Chemical Theory and Computation, 2023, 19(11): 3313-3323. [79] VORWERK C, SHENG N, GOVONI M, et al. Quantum embedding theories to simulate condensed systems on quantum computers[J]. Nature Computational Science, 2022, 2(7): 424-432. [80] CAO C, SUN J, YUAN X, et al. Ab initio quantum simulation of strongly correlated materials with quantum embedding[J]. npj Computational Materials, 2023, 9(1): 1-11. [81] O’BRIEN T E, ANSELMETTI G, GKRITSIS F, et al. Purification-based quantum error mitigation of pair-correlated electron simulations[J]. Nature Physics, 2023, 19(12): 1787-1792. [82] STEIJL R, BARAKOS G N. Parallel evaluation of quantum algorithms for computational fluid dynamics[J]. Computers & Fluids, 2018, 173: 22-28. [83] GRIFFIN K, JAIN S, FLINT T, et al. Investigation of quantum algorithms for direct numerical simulation of the Navier-Stokes equations[J]. Center for Turbulence Research Annual Research Briefs, 2019: 347-363. [84] SUCCI S, ITANI W, SREENIVASAN K, et al. Quantum computing for fluids: where do we stand?[J]. Europhysics Letters, 2023, 144(1): 10001. [85] GAITAN F. Finding flows of a Navier-Stokes fluid through quantum computing[J]. npj Quantum Information, 2020, 6(1): 1-6. [86] MENG Z, YANG Y. Quantum computing of fluid dynamics using the hydrodynamic Schrodinger equation[J]. Physical Review Research, 2023, 5(3): 033182. [87] BHARADWAJ S S, SREENIVASAN K R. Hybrid quantum algorithms for flow problems[J]. Proceedings of the National Academy of Sciences, 2023, 120(49): e2311014120. [88] DEMIRDJIAN R, GUNLYCKE D, REYNOLDS C A, et al. Variational quantum solutions to the advection-diffusion equ-ation for applications in fluid dynamics[J]. Quantum Information Processing, 2022, 21(9): 322. [89] GARRISON L H, EISENSTEIN D J, FERRER D, et al. The Abacus Cosmos: a suite of cosmological N-body simulations[J]. The Astrophysical Journal (Supplement Series), 2018, 236(2): 43. [90] MOCZ P, SZASZ A. Toward cosmological simulations of dark matter on quantum computers[J]. The Astrophysical Journal, 2021, 910(1): 29. [91] JAFFERIS D, ZLOKAPA A, LYKKEN J D, et al. Traversable wormhole dynamics on a quantum processor[J]. Nature, 2022, 612(7938): 51-55. [92] SHI Y H, YANG R Q, XIANG Z, et al. Quantum simulation of Hawking radiation and curved spacetime with a superconducting on-chip black hole[J]. Nature Communications, 2023, 14(1): 3263. [93] BAUER C W, DAVOUDI Z, BALANTEKIN A B, et al. Quantum simulation for high-energy physics[J]. PRX Quantum, 2023, 4(2): 027001. [94] KLCO N, DUMITRESCU E F, MCCASKEY A J, et al. Quantum-classical computation of Schwinger model dyna-mics using quantum computers[J]. Physical Review A, 2018, 98(3): 032331. [95] AVKHADIEV A, SHANAHAN P E, YOUNG R D. Accelerating lattice quantum field theory calculations via interpolator optimization using noisy intermediate-scale quantum com-puting[J]. Physical Review Letters, 2020, 124(8): 080501. [96] MUELLER N, TARASOV A, VENUGOPALAN R. Deeply inelastic scattering structure functions on a hybrid quantum computer[J]. Physical Review D, 2020, 102(1): 016007. [97] NACHMAN B, PROVASOLI D, DE JONG W A, et al. Quantum algorithm for high energy physics simulations[J]. Physical Review Letters, 2021, 126(6): 062001. [98] CHAWDHRY H, PELLEN M. Quantum simulation of colour in perturbative quantum chromodynamics[J]. SciPost Physics, 2023, 15(5): 205. [99] FARRELL R C, CHERNYSHEV I A, POWELL S J M, et al. Preparations for quantum simulations of quantum chromodynamics in 1+1 dimensions. I. Axial gauge[J]. Physical Review D, 2023, 107(5): 054512. [100] ATAS Y Y, HAASE J F, ZHANG J, et al. Simulating one-dimensional quantum chromodynamics on a quantum computer: real-time evolutions of tetra- and pentaquarks[J]. Physical Review Research, 2023, 5(3): 033184. [101] CIAVARELLA A N. Quantum simulation of lattice QCD with improved Hamiltonians[J]. Physical Review D, 2023,108(9): 094513. [102] FELSER T, TRENTI M, SESTINI L, et al. Quantum-inspired machine learning on high-energy physics data[J]. npj Quantum Information, 2021, 7(1): 1-8. [103] WU S L, CHAN J, GUAN W, et al. Application of quantum machine learning using the quantum variational classifier method to high energy physics analysis at the LHC on IBM quantum computer simulator and hardware with 10 qubits[J]. Journal of Physics G: Nuclear and Particle Physics, 2021, 48(12): 125003. [104] CHEN S Y C, WEI T C, ZHANG C, et al. Quantum convolutional neural networks for high energy physics data analysis[J]. Physical Review Research, 2022, 4(1): 013231. [105] SHARMA K K. Quantum machine learning and its supremacy in high energy physics[J]. Modern Physics Letters A, 2021, 36(2): 2030024. [106] GUAN W, PERDUE G, PESAH A, et al. Quantum machine learning in high energy physics[J]. Machine Learning: Science and Technology, 2021, 2(1): 011003. [107] XU Y, YANG J, KUANG Z, et al. Quantum computing enhanced distance-minimizing data-driven computational mec-hanics[J]. Computer Methods in Applied Mechanics and Engineering, 2023, 419: 116675. [108] BLUVSTEIN D, EVERED S J, GEIM A A, et al. Logical quantum processor based on reconfigurable atom arrays[J]. Nature, 2024, 626: 58-65. |
[1] | 梁文, 张文波. 面向图数据的量子行走模型及算法研究进展[J]. 计算机科学与探索, 2024, 18(7): 1748-1761. |
[2] | 吴 楠,宋方敏 . 量子计算与量子计算机[J]. 计算机科学与探索, 2007, 1(第1期): 1-16. |
[3] | 吴 楠,宋方敏+ . 量子计算与量子计算机[J]. 计算机科学与探索, 2007, 1(1): 1-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||