[1] LONG M L, WANG J M, DING G G, et al. Adaptation regularization: a general framework for transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(5): 1076-1089.
[2] PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(10): 1345-1359.
[3] PATEL V M, GOPALAN R, LI R, et al. Visual domain adaptation: a survey of recent advances[J]. IEEE Signal Processing Magazine, 2015, 32(3): 53-69.
[4] BRUZZONE L, MARCONCINI M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(5): 770-787.
[5] TAO J W, ZHOU D, LIU F Y, et al. Latent multi-feature co-regression for visual recognition by discriminatively leveraging multi-source models [J]. Pattern Recognition, 2018, 87: 296-316.
[6] LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[C]//Proceeding of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 97-105.
[7] LONG M S, WANG J M, JORDAN M I. Unsupervised domain adaptation with residual transfer networks[C]//Proceeding of the 30th Annual Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016: 136-144.
[8] CHEN Z L, ZHANG J Y, LIANG X D, et al. Blending-target domain adaptation by adversarial meta-adaptation networks[C]//Proceeding of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 2243-2252.
[9] LEE S M, KIM D W, KIM N, et al. Drop to adapt: learning discriminative features for unsupervised domain adaptation[C]//Proceeding of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 90-100.
[10] DING Z M, LI S, SHAO M, et al. Graph adaptive knowledge transfer for unsupervised domain adaptation[C]//Proceeding of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 36-52.
[11] TANG H, JIA K. Discriminative adversarial domain adaptation[C]//Proceeding of the 34th National Conference on Artificial Intelligence, New York, Feb 7-12, 2019: 5940-5947.
[12] BEN-DAVID S, BLITZER J, CRAMMER K, et al. A theory of learning from different domains[J]. Machine Learning, 2010, 79(1): 151-175.
[13] ZHANG Y, DENG B, TANG H, et al. Unsupervised multi-class domain adaptation: theory, algorithms, and practice[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 44(5): 2775-2792.
[14] GRETTON A, BORGWARDT K M, RASCH M, et al. A kernel method for the two-sample-problem[C]//Advances in Neural Information Processing Systems 19, Vancouver, Dec 4-7, 2006. Cambridge: MIT Press, 2007: 513-520.
[15] CHU W S, TORRE F D L, COHN J F. Selective transfer machine for personalized facial action unit detection[C]//Proceedings of the 2013 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Portland, Jun 23-28, 2013: 3515-3522.
[16] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2): 199-210.
[17] LONG M S, WANG J M, DING G G, et al. Transfer feature learning with joint distribution adaptation[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2013: 2200-2207.
[18] BAKTASHMOTLAGH M, HARANDI M T, LOVELL B C, et al. Unsupervised domain adaptation by domain invariant projection[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2013: 769-776.
[19] LIANG J, HE R, SUN Z N, et al. Aggregating randomized clustering-promoting invariant projections for domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(5): 1027-1042.
[20] CARLUCCI F M, PORZI L, CAPUTO B, et al. Autodial: automatic domain alignment layers[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5077-5085.
[21] LUO L K, CHEN L M, HU S Q, et al. Discriminative and geometry aware unsupervised domain adaptation[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3914-3927.
[22] KANG G L, JIANG L, YANG Y, et al. Contrastive adaptation network for single- and multi-source domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(4): 1793-1804.
[23] KRISHNAPURAM R, KELLER J M. A possibilistic approach to clustering[J]. IEEE Transations on Fuzzy Systems, 1993, 1(2): 98-110.
[24] 但雨芳, 陶剑文, 徐浩特. 可能性聚类假设的半监督分类方法[J]. 计算机工程与应用, 2020, 56(9): 65-74.
DAN Y F, TAO J W, XU H T. Semi-supervised classification method of possibilistic clustering assumption[J]. Computer Engineering and Applications, 2020, 56(9): 65-74.
[25] GRETTON A, HARCHAOUI Z, FUKUMIZU K J, et al. A fast, consistent kernel two-sample test[C]//Advances in Neural Information Processing Systems 23, Vancouver, Dec 6-9, 2010: 673-681.
[26] 但雨芳, 陶剑文, 赵悦, 等. 可能性聚类假设的多模适应学习方法[J]. 计算机科学与探索, 2023, 17(6): 1329-1342.
DAN Y F, TAO J W, ZHAO Y, et al. Multi-model adaptation method of possibilistic clustering assumption[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(6): 1329-1342.
[27] WANG L C, DING Z M, FU Y. Adaptive graph guided embedding for multi-label annotation[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 2798-2804.
[28] NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint [l2,1-]norms minimization[C]//Advances in Neural Information Processing Systems 23, Vancouver, Dec 6-9, 2010: 1813-1821.
[29] GHIFARY M, BALDUZZI D, KLEIJN W B, et al. Scatter component analysis: a unified framework for domain adaptation and domain generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7): 1414-1430.
[30] TAO J W, DAN Y F. Multi-source co-adaptation for EEG-based emotion recognition by mining correlation information[J]. Frontiers in Neuroscience, 2021(15): 677106.
[31] SRIPERUMBADUR B K, FUKUMIZU K, GRETTON A, et al. Kernel choice and classifiability for RKHS embeddings of probability distributions[C]//Advances in Neural Information Processing Systems 22, Vancouver, Dec 7-10, 2009: 1750-1758.
[32] SRIPERUMBUDUR B K, GRETTON A, FUKUMIZU K, et al. Hilbert space embeddings and metrics on probability measures[J]. Journal of Machine Learning Research, 2010, 11(3): 1517-1561.
[33] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]//Proceedings of the 11th European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010: 213-226.
[34] SUN B, FENG J S, SAENKO K. Return of frustratingly easy domain adaptation[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2016: 2058-2065.
[35] GRIFFIN G, HOLUB A, PERONA P. Caltech-256 object category dataset[R]. California Institute of Technology, 2007.
[36] ZHANG J, LI W Q, QGUNBONA P. Joint geometrical and statistical alignment for visual domain adaptation[C]//Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5150-5158.
[37] HERATH S, HARANDI M, PORIKLI F. Learning an invariant Hilbert space for domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 3956-3965.
[38] VENKATESWARA H, EUSEBIO J, CHAKRABORTY S, et al. Deep hashing network for unsupervised domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 5385-5394.
[39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
[40] SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618.
[41] HULL J J. A database for handwritten text recognition research[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(5): 550-554.
[42] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[43] NENE S A, NAYAR S K, MURASE H. Columbia object image library (COIL-20)[R]. 1996.
[44] GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2012: 2066-2073.
[45] LUO L K, WANG X F, HU S Q, et al. Close yet distinctive domain adaptation[J]. arXiv:1704.04235, 2017.
[46] FERNANDO B, HABRARD A, SEBBAN M, et al. Unsupervised visual domain adaptation using subspace alignment[C]//Proceedings of the 2013 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2013: 2960-2967.
[47] COURTY N, FLAMARY R, HABRARD A, et al. Joint distribution optimal transportation for domain adaptation[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 3730-3739.
[48] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv: 1412.3474, 2014.
[49] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain adversarial training of neural networks[J]. Journal of Machine Learning Research, 2016, 17: 1-35.
[50] GHIFARY M, KLEIJN W B, ZHANG M, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 597-613.
[51] YAN H L, DING Y K, LI P H, et al. Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2017: 945-954.
[52] LONG M S, ZHU H, WANG J M, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2208-2217.
[53] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2962-2971.
[54] ZHU Y C, ZHUANG F Z, WANG J D, et al. Deep subdomain adaptation network for image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1713-1722.
[55] DING N, XU Y X, TANG Y H, et al. Source-free domain adaptation via distribution estimation[J]. arXiv.2204.11257, 2022.
[56] CUI S H, WANG S H, ZHOU J B, et al. Gradually vanishing bridge for adversarial domain adaptation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12455-12464.
[57] HU L Q, KAN M N, SHAN S G, et al. Unsupervised domain adaptation with hierarchical gradient synchronization[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4043-4052.
[58] TANG H, CHEN K, JIA K. Unsupervised domain adaptation via structurally regularized deep clustering[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8725-8735.
[59] HOFFMAN J, RODNER E, DONAHUE J, et al. Asymmetric and category invariant feature transformations for domain adaptation[J]. International Journal of Computer Vision, 2014, 109(1/2): 28-41. |