[1] LI D, LI Y, WANG S. Interactive double states emotion cell model for textual dialogue emotion prediction[J]. Knowledge-Based Systems, 2020, 189: 105084.
[2] GHOSH S, CHOLLET M, LAKSANA E, et al. Affect-LM: a neural language model for customizable affective text generation[J]. arXiv:1704.06851, 2017.
[3] FIRDAUS M,?CHAUHAN H,?EKBAL A, et al. MEISD: a multimodal multi-label emotion, intensity and sentiment dialogue dataset for emotion recognition and sentiment analysis in conversations[C]//Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Dec 8-12, 2020: 4441-4453.
[4] GRAVES A. Long short-term memory: supervised sequence labelling with recurrent neural networks[J]. Studies in Computational Intelligence, 2012, 385: 37-45.
[5] CHO K, VAN MERRI?NBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[J]. arXiv:1406.1078, 2014.
[6] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[J]. arXiv:1409.2329, 2014.
[7] LI J, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models[J]. arXiv:1510.03055, 2015.
[8] SORDONI A, BENGIO Y, VAHABI H, et al. A hierarchical recurrent encoder-decoder for generative context-aware query suggestion[C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management, May 1-8, 2015. New York: ACM, 2015: 553-562.
[9] SERBAN I, SORDONI A, LOWE R, et al. A hierarchical latent variable encoder-decoder model for generating dialogues[C]//Proceedings of the 2017 AAAI Conference on Artificial Intelligence, San Francisco, Feb 2-7, 2017. Menlo Park: AAAI, 2017: 3295-3301.
[10] XING C, WU Y, WU W, et al. Hierarchical recurrent attention network for response generation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 5610-5617.
[11] ZHOU H, HUANG M, ZHANG T, et al. Emotional chatting machine: emotional conversation generation with internal and external memory[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 730-738.
[12] CHEN Z, SONG R, XIE X, et al. Neural response generation with relevant emotions for short text conversation[C]// Proceedings of the 2019 CCF International Conference on Natural Language Processing and Chinese Computing, Dun-huang, Oct 9-14, 2019. Cham: Springer, 2019: 117-129.
[13] YAO K C, ZHANG L B, LUO T J, et al. Non-deterministic and emotional chatting machine: learning emotional conversation generation using conditional variational autoencoders[J]. Neural Computing and Applications, 2021, 33(11): 5581-5589.
[14] MA Z Q, DU B X, SHEN J, et al. A emotional and context-sensitive model for the Seq2Seq-based dialogue generation[J]. Elektrotehni?ki Vestnik, 2020, 87(3): 127-134.
[15] LI Q T, LI P J, REN Z, et al. Knowledge bridging for empathetic dialogue generation[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, Feb 22-Mar 1, 2022. Menlo Park: AAAI, 2022: 10993-11001.
[16] SABOUR S, ZHENG C, HUANG M. CEM: commonsense-aware empathetic response generation[C]//Proceedings of the 36th AAAI Conference on Artificial Intelligence, Feb 22-Mar 1, 2022. Menlo Park: AAAI, 2022: 11229-11237.
[17] WANG C, MA Z, JIA W, et al. Specify the emotional intensity response generation model[C]//Proceedings of the 5th International Conference on Pattern Recognition and Artificial Intelligence, Chengdu, Aug 18-12, 2022. Piscataway: IEEE, 2022: 994-1001.
[18] PASZKE A, GROSS S, MASSA F, et al. Pytorch: an imperative style, high-performance deep learning library[C]//Proc-eedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2019: 8026-8037.
[19] RADFORD A, WU J, CHILD R, et al. Language models are unsupervised multitask learners[J]. OpenAI Blog, 2019, 1(8): 9.
[20] SHAN Y, CUI A, TAN L, et al. Overview of the NLPCC 2019 shared task: open domain conversation evaluation[C]//Proceedings of the 8th CCF International Conference on Nat-ural Language Processing and Chinese Computing, Dunhuang, Oct 9-14, 2019. Cham: Springer, 2019: 829-834. |