[1] YANN L, YOSHUA B, GEOFFREY H. Deep learning[J]. Nature, 2015, 521(7553): 436-444.
[2] LIU W, FAN H, XIA M. Tree-based heterogeneous cascade ensemble model for credit scoring[J]. International Journal of Forecasting, 2023, 39(4): 1593-1614.
[3] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
[4] 陈珂锐, 孟小峰. 机器学习的可解释性[J]. 计算机研究与发展, 2020, 57(9): 1971-1986.
CHEN K R, MENG X F. Interpretation and understanding in machine learning[J]. Journal of Computer Research and Development, 2020, 57(9): 1971-1986.
[5] BURGET J. Explainable AI in banking[J]. Journal of Digital Banking, 2020, 4(4): 344-350.
[6] DUMITRESCU E, HUé S, HURLIN C, et al. Machine learning for credit scoring: improving logistic regression with non-linear decision-tree effects[J]. European Journal of Operational Research, 2022, 297(3): 1178-1192.
[7] 董路安, 叶鑫. 基于改进教学式方法的可解释信用风险评价模型构建[J]. 中国管理科学, 2020, 28(9): 45-53.
DONG L A, YE X. Interpretable credit risk assessment modeling based on improved pedagogical method[J]. Chinese Journal of Management Science, 2020, 28(9): 45-53.
[8] DOSHI-VELEZ F, KIM B. Towards a rigorous science of interpretable machine learning[J]. arXiv:1702.08608, 2017.
[9] DORAN D, SCHULZ S, BESOLD T R. What does explainable AI really mean? A new conceptualization of perspectives[J]. arXiv:1710.00794, 2017.
[10] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10): 2071-2096.
JI S L, LI J F, DU T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10): 2071-2096.
[11] CARVALHO D V, PEREIRA E M, CARDOSO J S. Machine learning interpretability: a survey on methods and metrics[J]. Electronics, 2019, 8(8): 832.
[12] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?” Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144.
[13] SHANKARANARAYANA S M, RUNJE D. ALIME: autoencoder based approach for local interpretability[C]//Proceedings of the 20th International Conference on Intelligent Data Engineering and Automated Learning, Manchester, Nov 14-16, 2019. Cham: Springer, 2019: 454-463.
[14] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5): 1189-1232.
[15] 沈隆, 周颖. 管理层讨论与分析能预示企业违约吗?——基于中国股市的实证分析[J/OL]. 系统管理学报 [2023-08-08]. http://kns.cnki.net/kcms/detail/31.1977.N.20230904.1211.002.html.
SHEN L, ZHOU Y. Can management discussion and analysis predict corporate defaults? An empirical analysis based on the Chinese stock market[J/OL]. Journal of Systems & Management [2023-08-08]. http://kns.cnki.net/kcms/detail/31.1977.N.20230904.1211.002.html.
[16] LUNDBERG S M, LEE S I. A unified approach to interpreting model predictions[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 4765-4774.
[17] 雷欣南, 林乐凡, 肖斌卿, 等. 小微企业违约特征再探索:基于SHAP解释方法的机器学习模型[J/OL]. 中国管理科学[2023-08-08]. https://doi.org/10.16381/j.cnki.issn1003-207x. 2021.0027.
LEI X N, LIN L F, XIAO B Q, et al. Re-exploration of small and micro enterprises’ default characteristics based on machine learning models with SHAP[J/OL]. Chinese Journal of Management Science [2023-08-08]. https://doi.org/10.16381/j.cnki.issn1003-207x.2021.0027.
[18] CARUANA R, LOU Y, GEHRKE J, et al. Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission[C]//Proceedings of the 21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2015: 1721-1730.
[19] YANG Z, ZHANG A, SUDJIANTO A. GAMI-Net: an explainable neural network based on generalized additive models with structured interactions[J]. Pattern Recognition, 2021, 120: 108192.
[20] PENG X, LI Y, TSANG I W, et al. XAI beyond classification: interpretable neural clustering[J]. The Journal of Machine Learning Research, 2022, 23(1): 227-254.
[21] RUDIN C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead[J]. Nature Machine Intelligence, 2019, 1(5): 206-215.
[22] WANG T, HE C, JIN F, et al. Evaluating the effectiveness of marketing campaigns for malls using a novel interpretable machine learning model[J]. Information Systems Research, 2022, 33(2): 659-677.
[23] DENG H. Interpreting tree ensembles with intrees[J]. International Journal of Data Science and Analytics, 2019, 7(4): 277-287.
[24] DONG L, YE X, YANG G. Two-stage rule extraction method based on tree ensemble model for interpretable loan evaluation[J]. Information Sciences, 2021, 573: 46-64.
[25] FRIEDMAN J H, POPESCU B E. Predictive learning via rule ensembles[J]. The Annals of Applied Statistics, 2008, 2(3): 916-954.
[26] KATO H, HANADA H, TAKEUCHI I. Safe RuleFit: learning optimal sparse rule model by meta safe screening[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2330-2343.
[27] LUNDBERG S M, ERION G, CHEN H, et al. From local explanations to global understanding with explainable AI for trees[J]. Nature Machine Intelligence, 2020, 2(1): 56-67.
[28] 沈隆, 周颖. 基于大数据变量最优组合的违约预测模型——以中国小企业为例[J/OL]. 系统工程理论与实践[2023-08-08]. http://kns.cnki.net/kcms/detail/11.2267.N.20231009. 1521.008.html.
SHEN L, ZHOU Y. Default prediction model based on optimal combination of big data variables: a case study of Chinese small enterprises[J]. Systems Engineering-Theory & Practice [2023-08-08]. http://kns.cnki.net/kcms/detail/11.2267. N.20231009.1521.008.html.
[29] 任婷婷, 鲁统宇, 崔俊. 基于改进AdaBoost算法的动态不平衡财务预警模型[J]. 数量经济技术经济研究, 2021, 38(11): 182-197.
REN T T, LU T Y, CUI J. Dynamic imbalanced financial distress prediction model based on improved AdaBoost algorithm[J]. Journal of Quantitative & Technological Economics, 2021, 38(11): 182-197.
[30] QIAN H, WANG B, YUAN M, et al. Financial distress prediction using a corrected feature selection measure and gradient boosted decision tree[J]. Expert Systems with Applications, 2022, 190: 116202.
[31] 田宝新, 王建琼. 基于财务与非财务要素的上市公司财务困境预警实证研究[J]. 金融评论, 2017, 9(5): 103-115.
TIAN B X, WANG J Q. Empirical study on financial distress early warning of listed companies based on the financial and non-financial factors[J]. Chinese Review of Financial Studies, 2017, 9(5): 103-115.
[32] 沈隆, 周颖, 赵轩铎. 基于余弦相似度的企业违约预测模型及实证[J]. 系统工程理论与实践, 2022, 42(7): 1826-1842.
SHEN L, ZHOU Y, ZHAO X D. A cosine similarity-based corporate default prediction model and empirical evidence[J]. Systems Engineering-Theory & Practice, 2022, 42(7): 1826-1842.
[33] 迟国泰, 章彤, 张志鹏. 基于非平衡数据处理的上市公司ST预警混合模型[J]. 管理评论, 2020, 32(3): 3-20.
CHI G T, ZHANG T, ZHANG Z P. Special treatment warning hybrid model dealing with imbalanced data of Chinese listed companies[J]. Management Review, 2020, 32(3): 3-20.
[34] 闫达文, 李存, 迟国泰. 基于混频数据的中国上市公司财务困境动态预测研究[J]. 中国管理科学, 2024, 32(1): 1-12.
YAN D W, LI C, CHI G T. Dynamic financial distress prediction for Chinese listed companies based on the mixed frequency data[J]. Chinese Journal of Management Science, 2024, 32(1): 1-12.
[35] BAHRAMI M, AMIRI M J, MAHMOUDI M R, et al. Modeling caffeine adsorption by multi-walled carbon nanotubes using multiple polynomial regression with interaction effects[J]. Journal of Water and Health, 2017, 15(4): 526-535.
[36] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45: 5-32.
[37] CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. |