计算机科学与探索 ›› 2024, Vol. 18 ›› Issue (8): 1979-1997.DOI: 10.3778/j.issn.1673-9418.2401020

• 前沿·综述 • 上一篇    下一篇

多智能体强化学习算法研究综述

李明阳,许可儿,宋志强,夏庆锋,周鹏   

  1. 1. 南京信息工程大学 自动化学院,南京 210044
    2. 无锡学院 自动化学院,江苏 无锡 214105
  • 出版日期:2024-08-01 发布日期:2024-07-29

Review of Research on Multi-agent Reinforcement Learning Algorithms

LI Mingyang, XU Ke’er, SONG Zhiqiang, XIA Qingfeng, ZHOU Peng   

  1. 1. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China
    2. School of Automation, Wuxi University, Wuxi, Jiangsu 214105, China
  • Online:2024-08-01 Published:2024-07-29

摘要: 近年来,多智能体强化学习算法技术已广泛应用于人工智能领域。系统性地分析了多智能体强化学习算法,审视了其在多智能体系统中的应用与进展,并深入调研了相关研究成果。介绍了多智能体强化学习的研究背景和发展历程,并总结了已有的相关研究成果;简要回顾了传统强化学习算法在不同任务下的应用情况;重点强调多智能体强化学习算法分类,并根据三种主要的任务类型(路径规划、追逃博弈、任务分配)对其在多智能体系统中的应用、挑战以及解决方案进行了细致的梳理与分析;调研了多智能体领域中现有的算法训练环境,总结了深度学习对多智能体强化学习算法的改进作用,提出该领域所面临的挑战并展望了未来的研究方向。

关键词: 智能体, 强化学习, 多智能体强化学习, 多智能体系统

Abstract: In recent years, the technique of multi-agent reinforcement learning algorithm has been widely used in the field of artificial intelligence. This paper systematically analyses the multi-agent reinforcement learning algorithm, examines its application and progress in multi-agent systems, and explores the relevant research results in depth. Firstly, it introduces the research background and development history of multi-agent reinforcement learning and summarizes the existing relevant research results. Secondly, it briefly reviews the application of traditional reinforcement learning algorithms under different tasks. Then, it highlights the classification of multi-agent reinforcement learning algorithms and their application in multi-agent systems according to the three main types of tasks (path planning, pursuit and escape game, task allocation), challenges, and solutions. Finally, it explores the existing algorithm training environments in the field of multi-agents, summarizes the improvement of deep learning on multi-agent reinforcement learning algorithms, proposes challenges and looks forward to future research directions in this field.

Key words: agent, reinforcement learning, multi-agent reinforcement learning, multi-agent systems