[1] SHI Y, CUI L M, QI Z Q, et al. Automatic road crack detection using random structured forests[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(12): 3434-3445.
[2] FAN L L, WANG D D, WANG J H, et al. Pavement defect detection with deep learning: a comprehensive survey[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(3): 4292-4311.
[3] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[4] CAI Z W, VASCONCELOS N. Cascade R-CNN: high quality object detection and instance segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(5): 1483-1498.
[5] LIANG F T, ZHOU Y, CHEN X, et al. Review of target detection technology based on deep learning[C]//Proceedings of the 5th International Conference on Control Engineering and Artificial Intelligence. New York: ACM, 2021: 132-135.
[6] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Advances in Neural Information Processing Systems 28, 2015: 91-99.
[7] ZHANG K H, SHEN H K. Solder joint defect detection in the connectors using improved Faster-RCNN algorithm[J]. Applied Sciences, 2021, 11(2): 576.
[8] YANG A M, JIANG T Y, HAN Y, et al. Research on application of on-line melting in-SITU visual inspection of iron ore powder based on Faster R-CNN[J]. Alexandria Engineering Journal, 2022, 61(11): 8963-8971.
[9] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[10] JIANG P Y, ERGU D, LIU F Y, et al. A review of Yolo algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073.
[11] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. [2024-11-20]. https://arxiv.org/abs/1804.02767.
[12] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the 18th European Conference on Computer Vision. Cham: Springer, 2024: 1-21.
[13] 任晶晶, 徐志远. 基于YOLOv8的轻量化道路裂缝检测模型[J]. 山西电子技术, 2024(4): 54-56.
REN J J, XU Z Y. A lightweight road crack detection model based on YOLOv8[J]. Shanxi Electronic Technology, 2024(4): 54-56.
[14] 蒋大伟, 吴正平, 景思伟. 基于改进YOLOv5的道路缺陷检测与分类研究[J]. 信息技术与信息化, 2024(2): 31-34.
JIANG D W, WU Z P, JING S W. Research on road defect detection and classification based on improved YOLOv5[J]. Information Technology and Informatization, 2024(2): 31-34.
[15] 杨豪, 刘李彦, 张军辉, 等. 环境适应性优化的轻量化多尺度道路裂缝检测[J]. 中国公路学报, 2025, 38(7): 118-134.
YANG H, LIU L Y, ZHANG J H, et al. Environmental adaptability optimization lightweight multi-scale road crack detection[J]. China Journal of Highway and Transport, 2025, 38(7): 118-134.
[16] 宣以国, 余成波, 蒋启超, 等. 基于改进YOLOv7的道路裂缝和坑洞检测算法[J]. 科学技术与工程, 2024, 24(17): 7205-7213.
XUAN Y G, YU C B, JIANG Q C, et al. Improved YOLOv7 road crack and pothole detection algorithm[J]. Science Technology and Engineering, 2024, 24(17): 7205-7213.
[17] 侯涛, 张田明, 牛宏侠. MFF-YOLO: 多尺度特征融合的轻量级道路缺陷检测算法[J/OL]. 工程科学与技术 [2024-11-20]. https://kns.cnki.net/kcms/detail/51.1773.TB.20241115. 1437.003.html.
HOU T, ZHANG T M, NIU H X. MFF-YOLO: a lightweight road damage detection algorithm based on multiscale feature fusion[J/OL]. Advanced Engineering Sciences[2024-11-20]. https://kns.cnki.net/kcms/detail/51.1773.TB. 20241115.1437.003.html.
[18] 李胜杰, 刘贵如, 王陆林, 等. 一种轻量化YOLOv5道路缺陷检测算法[J/OL]. 天津理工大学学报 [2024-11-20]. https:// kns.cnki.net/kcms/detail/12.1374.N.20241101. 1754.006.html.
LI S J, LIU G R, WANG L L, et al. A lightweight YOLOv5 road defect detection algorithm[J/OL]. Journal of Tianjin University of Technology [2024-11-20]. https://kns.cnki.net/kcms/detail/12.1374.N.20241101.1754.006.html.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[20] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[21] MENG D P, CHEN X K, FAN Z J, et al. Conditional DETR for fast training convergence[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3631-3640.
[22] ZHU X Z, SU W J, LU L W, et al. Deformable-DETR: deformable transformers for end-to-end object detection[EB/OL]. [2024-11-20]. https://arxiv.org/abs/2010.04159.
[23] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13609-13617.
[24] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[EB/OL]. [2024-11-21]. https://arxiv.org/abs/2201.12329.
[25] 许正森, 雷相达, 管海燕. 多尺度局部特征增强Transformer道路裂缝检测模型[J]. 中国图象图形学报, 2023, 28(4): 1019-1028.
XU Z S, LEI X D, GUAN H Y. Multi-scale local feature enhanced transformer network for pavement crack detection[J]. Journal of Image and Graphics, 2023, 28(4): 1019-1028.
[26] 刘知阳. 基于Transformer的道路裂缝检测研究[D]. 汉中: 陕西理工大学, 2024.
LIU Z Y. Research on road crack detection based on transformer[D]. Hanzhong: Shaanxi University of Technology, 2024.
[27] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[28] ZHANG H, WU C R, ZHANG Z Y, et al. ResNeSt: split-attention networks[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2735-2745.
[29] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[EB/OL]. [2024-11-21]. https://arxiv.org/abs/1709.01507.
[30] CHEN J R, KAO S H, HE H, et al. Run, don??t walk: chasing higher FLOPS for faster neural networks[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031.
[31] CHEN Y P, FAN H Q, XU B, et al. Drop an octave: reducing spatial redundancy in convolutional neural networks with octave convolution[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 3434-3443.
[32] ZHU L, WANG X J, KE Z H, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 10323-10333.
[33] LAU K W, PO L M, REHMAN Y A U. Large separable kernel attention: rethinking the large kernel attention design in CNN[J]. Expert Systems with Applications, 2024, 236: 121352.
[34] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[35] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[EB/ OL]. [2024-11-21]. https://arxiv.org/abs/2203.03605.
[36] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. Geoscience Data Journal, 2024, 11(4): 846-862.
[37] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 8514-8523. |