[1] DU Y X, LI X. Recursive deep residual learning for single image dehazing[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 843-8437.
[2] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[3] TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[EB/OL]. [2024-05-16]. https://arxiv.org/abs/1905.11946.
[4] XIAN Y Q, LAMPERT C H, SCHIELE B, et al. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(9): 2251-2265.
[5] LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks[C]//Proceedings of the 23rd National Conference on Artificial intelligence, 2008: 646-651.
[6] LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 951-958.
[7] FARHADI A, ENDRES I, HOIEM D, et al. Describing objects by their attributes[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 1778-1785.
[8] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2024-05-16]. https://arxiv.org/abs/1301.3781.
[9] POURPANAH F, ABDAR M, LUO Y X, et al. A review of generalized zero-shot learning methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 4051-4070.
[10] WANG W, ZHENG V W, YU H, et al. A survey of zero-shot learning: settings, methods, and applications[J]. ACM Transactions on Intelligent Systems and Technology, 2019, 10(2).
[11] CHEN S M, HONG Z M, HOU W J, et al. TransZero++: cross attribute-guided transformer for zero-shot learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 12844-12861.
[12] CHEN Z, HUANG Y, CHEN J, et al. Duet: cross-modal semantic grounding for contrastive zero-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(1): 405-413.
[13] CHEN S M, HONG Z M, XIE G S, et al. MSDN: mutually semantic distillation network for zero-shot learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7602-7611.
[14] LIU M, LI F, ZHANG C, et al. Progressive semantic-visual mutual adaption for generalized zero-shot learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 15337-15346.
[15] KINGMA D P, WELLING M. Auto-encoding variational Bayes[EB/OL]. [2024-05-16]. https://arxiv.org/abs/1312.6114.
[16] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[17] HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[C]//Advances in Neural Information Processing Systems 33, 2020: 6840-6851.
[18] NARAYAN S, GUPTA A, KHAN F S, et al. Latent embedding feedback and discriminative features for zero-shot classification[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 479-495.
[19] YUE Q, CUI J B, BAI L, et al. A zero-shot learning boosting framework via concept-constrained clustering[J]. Pattern Recognition, 2024, 145: 109937.
[20] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22) [2024-05-19]. https://arxiv.org/abs/2010.11929.
[21] HAN Z, FU Z, CHEN S, et al. Contrastive embedding for generalized zero-shot learning[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2371-2381.
[22] XIAN Y Q, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 5542-5551.
[23] MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. (2014-11-06) [2024-05-19]. https://arxiv.org/abs/1411.1784.
[24] ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 214-223.
[25] MISHRA A, REDDY S K, MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2269-22698.
[26] YU Y, JI Z, HAN J, et al. Episode-based prototype generating network for zero-shot learning[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14035-14044.
[27] SHEN Y M, QIN J, HUANG L, et al. Invertible zero-shot recognition flows[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 614-631.
[28] GOWDA S N. Synthetic sample selection for generalized zero-shot learning[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 58-67.
[29] KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22(1): 79-86.
[30] GULRAJANI I, AHMED F, ARJOVSKY M, et al. Improved training of Wasserstein GANs[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5769-5779.
[31] AHMED M, SERAJ R, ISLAM S M S. The k-means algorithm: a comprehensive survey and performance evaluation[J]. Electronics, 2020, 9(8): 1295.
[32] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 4080-4090.
[33] CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations[C]//Proceedings of the 37th International Conference on Machine Learning, 2020: 1597-1607.
[34] WAH C, BRANSON S, WELINDER P, et al. The Caltech-UCSD Birds-200-2011 dataset: CNS-TR-2011-001[R]. California Institute of Technology, 2011.
[35] PATTERSON G, HAYS J. SUN attribute database: discovering, annotating, and recognizing scene attributes[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2751-2758.
[36] REED S, AKATA Z, LEE H, et al. Learning deep representations of fine-grained visual descriptions[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 49-58.
[37] CASCANTE-BONILLA P, KARLINSKY L, SMITH J S, et al. On the transferability of visual features in generalized zero-shot learning[EB/OL]. [2024-05-19]. https://arxiv.org/abs/2211.12494.
[38] MAAS A L, HANNUN A Y, NG A Y. Rectifier nonlinearities improve neural network acoustic models[C]//Proceedings of the 2013 ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013.
[39] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. [2024-05-19]. https://arxiv.org/abs/1412.6980.
[40] CHEN S M, HONG Z M, LIU Y, et al. TransZero: attribute-guided transformer for zero-shot learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 330-338.
[41] CHENG D, WANG G R, WANG B, et al. Hybrid routing transformer for zero-shot learning[J]. Pattern Recognition, 2023, 137: 109270.
[42] LIU Y, ZHOU L, BAI X, et al. Goal-oriented gaze estimation for zero-shot learning[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3793-3802.
[43] XU B R, ZENG Z G, LIAN C, et al. Generative mixup networks for zero-shot learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(3): 4054-4065.
[44] CHEN S M, WANG W J, XIA B H, et al. FREE: feature refinement for generalized zero-shot learning[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 122-131.
[45] KONG X, GAO Z D, LI X F, et al. En-compactness: self-distillation embedding & contrastive generation for generalized zero-shot learning[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 9296-9305.
[46] LI X F, ZHANG Y C, BIAN S R, et al. VS-boost: boosting visual-semantic association for generalized zero-shot learning[C]//Proceedings of the 32nd International Joint Conference on Artificial Intelligence, 2023: 1107-1115.
[47] PAUL R, VORA S, LI B X. Instance adaptive prototypical contrastive embedding for generalized zero shot learning[EB/OL]. [2024-05-18]. https://arxiv.org/abs/2309.06987.
[48] LI Q, ZHAN Z X, SHEN Y Y, et al. Co-GZSL: feature contrastive optimization for generalized zero-shot learning[J]. Neural Processing Letters, 2024, 56(2): 99.
[49] RAO Z J, GUO J C, LU X C, et al. Attribute-aware representation rectification for generalized zero-shot learning[EB/OL]. [2024-05-18]. https://arxiv.org/abs/2311.14750.
[50] XIANG L, ZHOU Y, DUAN H R, et al. Dual feature augmentation network for generalized zero-shot learning[EB/OL]. [2024-05-18]. https://arxiv.org/abs/2309.13833.
[51] LI J J, JING M M, LU K, et al. Leveraging the invariant side of generative zero-shot learning[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 7394-7403.
[52] KIM J, SHIM K, KIM J, et al. Vision transformer-based feature extraction for generalized zero-shot learning[C]//Proceedings of the 2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5.
[53] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |