[1] BHATTACHARYA D, CURRIM F, RAM S. Evaluating distributed computing infrastructures: an empirical study comparing hadoop deployments on cloud and local systems[J]. IEEE Transactions on Cloud Computing, 2021, 9(3): 1075-1088.
[2] TOSHNIWAL A, TANEJA S, SHUKLA A, et al. Storm@ twitter[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2014: 147-156.
[3] CHENG D Z, WANG Y, DAI D. Dynamic resource provisioning for iterative workloads on Apache Spark[J]. IEEE Transactions on Cloud Computing, 2021, 11(1): 639-652.
[4] XU L N, LI M, ZHANG L, et al. MEMTUNE: dynamic memory management for in-memory data analytic platforms[C]//Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium. Piscataway: IEEE, 2016: 383-392.
[5] CHEN S W, WANG W S, WU X Y, et al. Optimizing performance and computing resource management of in-memory big data analytics with disaggregated persistent memory[C]//Proceedings of the 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Pisca-taway: IEEE, 2019: 21-30.
[6] LIN T H, LIN C H. Hyperspectral change detection using semi-supervised graph neural network and convex deep learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5515818.
[7] ZHU W G, SUN Y Q, FANG R Q, et al. A low-memory community detection algorithm with hybrid sparse structure and structural information for large-scale networks[J]. IEEE Transactions on Parallel and Distributed Systems, 2023, 34(10): 2671-2683.
[8] ZHU J Y, YANG R Y, SUN X Y, et al. QoS-aware co-scheduling for distributed long-running applications on shared clusters[J]. IEEE Transactions on Parallel and Distributed Systems, 2022, 33(12): 4818-4834.
[9] CARLSSON N, EAGER D. Optimized dynamic cache instantiation and accurate LRU approximations under time-varying request volume[J]. IEEE Transactions on Cloud Computing, 2023, 11(1): 779-797.
[10] LI H, JI S P, ZHONG H, et al. LPW: an efficient data-aware cache replacement strategy for Apache Spark[J]. Science China Information Sciences, 2022, 66(1): 112104.
[11] LIU R N, ZHANG Q H, WANG Y, et al. Industrial big data analytical system in industrial cyber-physical systems based on coarse-to-fine deep network[J]. IEEE Transactions on Industrial Cyber-Physical Systems, 2023, 1: 359-370.
[12] SAIDI K, BARDOU D. Task scheduling and VM placement to resource allocation in cloud computing: challenges and opportunities[J]. Cluster Computing, 2023, 26(5): 3069-3087.
[13] BEHERA I, SOBHANAYAK S. Task scheduling optimization in heterogeneous cloud computing environments: a hybrid GA-GWO approach[J]. Journal of Parallel and Distributed Computing, 2024, 183: 104766.
[14] FRIEDLANDER E, AGGARWAL V. Generalization of LRU cache replacement policy with applications to video streaming[J]. ACM Transactions on Modeling and Performance Evaluation of Computing Systems, 2019, 4(3): 1-22.
[15] YANG P F, WANG Q, YE H W, et al. Partially shared cache and adaptive replacement algorithm for NoC-based many-core systems[J]. Journal of Systems Architecture, 2019, 98: 424-433.
[16] GENG Y Z, SHI X H, PEI C, et al. LCS: an efficient data eviction strategy for spark[J]. International Journal of Parallel Programming, 2017, 45(6): 1285-1297.
[17] YU Y H, ZHANG C L, WANG W, et al. Towards dependency-aware cache management for data analytics applications[J]. IEEE Transactions on Cloud Computing, 2022, 10(1): 706-723.
[18] DUAN M X, LI K L, TANG Z, et al. Selection and replacement algorithms for memory performance improvement in Spark[J]. Concurrency and Computation: Practice and Experience, 2016, 28(8): 2473-2486.
[19] JIANG K, DU S F, ZHAO F, et al. Effective data management strategy and RDD weight cache replacement strategy in Spark[J]. Computer Communications, 2022, 194: 66-85.
[20] LI C L, CAI Q Q, LUO Y L. Dynamic data replacement and adaptive scheduling policies in spark[J]. Cluster Computing, 2022, 25(2): 1421-1439.
[21] FU Z M, HE M S, YI Y, et al. Improving data locality of tasks by executor allocation in spark computing environment[J]. IEEE Transactions on Cloud Computing, 2024, 12(3): 876-888.
[22] DUAN Y B, WANG N, WU J. Accelerating DAG-style job execution via optimizing resource pipeline scheduling[J]. Journal of Computer Science and Technology, 2022, 37(4): 852-868.
[23] LI L S, WAN Z Q, HE H B. Incomplete multi-view clustering with joint partition and graph learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 589-602.
[24] SOUTO J V, CASTRO M. Improving concurrency and memory usage in distributed operating systems for lightweight manycores via cooperative time-sharing lightweight tasks[J]. Journal of Parallel and Distributed Computing, 2023, 174: 2-18.
[25] CHOUKSE E, SULLIVAN M B, O’CONNOR M, et al. Buddy compression: enabling larger memory for deep lear-ning and HPC workloads on GPUs[C]//Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture. Piscataway: IEEE, 2020: 926-939.
[26] XUE T, WEN Y, LUO B, et al. SparkAC: fine-grained access control in spark for secure data sharing and analytics[J]. IEEE Transactions on Dependable and Secure Computing, 2023, 20(2): 1104-1123.
[27] SINGH P, SINGH S, MISHRA P K, et al. A data structure perspective to the RDD-based Apriori algorithm on Spark[J]. International Journal of Information Technology, 2022, 14(3): 1585-1594.
[28] KIM Y K, HOSEINYFARAHABADY M R, LEE Y C, et al. Automated fine-grained CPU cap control in serverless computing platform[J]. IEEE Transactions on Parallel and Distributed Systems, 2020, 31(10): 2289-2301.
[29] HUANG S S, HUANG J, DAI J Q, et al. The HiBench benchmark suite: characterization of the MapReduce-based data analysis[C]//Proceedings of the 2010 IEEE 26th International Conference on Data Engineering Workshops. Piscataway: IEEE, 2010: 41-51.
[30] MASHAYEKHY L, NEJAD M M, GROSU D, et al. Energy-aware scheduling of MapReduce jobs for big data applications[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(10): 2720-2733. |