计算机科学与探索 ›› 2009, Vol. 3 ›› Issue (6): 585-593.DOI: 10.3778/j.issn.1673-9418.2009.06.003

• 学术研究 • 上一篇    下一篇

C-Rank:一种Deep Web数据记录可信度评估方法

艾 静,王仲远,孟小峰+   

  1. 中国人民大学 信息学院,北京 100872
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2009-11-15 发布日期:2009-11-15
  • 通讯作者: 艾 静

C-Rank: A Credibility Evaluation Method for Deep Web Records

AI Jing, WANG Zhongyuan, MENG Xiaofeng+   

  1. School of Information, Renmin University of China, Beijing 100872, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2009-11-15 Published:2009-11-15
  • Contact: AI Jing

摘要: 针对Web信息可信度问题,提出了一种为Deep Web数据记录计算可信度的有效方法C-Rank。该方法为每一条记录构造一个S-R可信度网络,包含两种类型顶点及三种类型边。首先基于可信度传播的思想,利用顶点出度为每一个顶点计算其局部可信度值;再利用Record顶点入度及相邻Site顶点的可信度值,为该Record顶点计算权值;继而求得整个S-R网络的全局可信度值。实验证明,C-Rank方法能够合理而有效地评价数据记录的可信度,从而达到甄别虚假信息,为用户推荐可信数据记录的目的。该方法普遍适用于Deep Web的各个领域。

关键词: 深层网络, Web信息可信度, S-R可信度网络, 可信度传播

Abstract: How to identify and evaluate information credibility ranking has become an increasing important problem. To address the issue, an effective credibility evaluation method called C-Rank to compute trust values of records in Deep Web databases is proposed, which constructs an S-R credibility graph for each record. The graph contains 2 types of vertices and 3 types of edges. Firstly, each vertex’s local trust value is computed by using out-degrees based on the idea of trust propagation. Then, the weight of record vertex is computed by using its in-degree and adjacent site vertices’ local trust values. Lastly, the global trust value of the S-R credibility graph is computed, which denotes the record’s credibility in the whole Web. Experiment results show C-Rank can evaluate credibility rankings of records appropriately and discriminate false information effectively. This method is generally applicable to all domains of Deep Web.

Key words: Deep Web, Web information credibility, S-R credibility graph, trust propagation

中图分类号: