计算机科学与探索 ›› 2018, Vol. 12 ›› Issue (9): 1372-1382.DOI: 10.3778/j.issn.1673-9418.1709049
刘攀登+,李 川,李晓娟
LIU Pandeng+, LI Chuan, LI Xiaojuan
摘要: 现存用户移动性规律发现方法,如PMM(periodic mobility model)、W3等的核心缺陷在于,不能将时间对于用户访问位置变化与地理位置之间关联制约的两种重要影响真实、量化地反映出来,因而无法准确预测用户未来的签到位置。针对该问题,提出基于向量自回归的位置转移演化算法(location transfer evolution algorithm based on vector autoregressive,LTE),基于用户签到位置的变化历史,学习得到用户位置转移随时间、空间变化的规律性,且基于此进行用户位置的准确预测。基于Foursquare和Gowalla真实签到数据集,进行大量、深入的实验分析,实验结果表明,相对于W3,LTE算法的准确率提升4.43%~21.31%,相对于PMM,LTE算法的准确率提升25.07%~38.50%。