计算机科学与探索 ›› 2015, Vol. 9 ›› Issue (8): 945-953.DOI: 10.3778/j.issn.1673-9418.1410041

• 网络与信息安全 • 上一篇    下一篇

面向关系语境的罪犯藏匿位置预测方法

张彩平1,周丽华1+,陈红梅1,阮惠风2   

  1. 1. 云南大学 信息学院 计算机科学与工程系,昆明 650091
    2. 云南警官学院,昆明 650223
  • 出版日期:2015-08-01 发布日期:2015-08-06

Relation Context Oriented Approach to Predict Hiding Location of Criminals

ZHANG Caiping1, ZHOU Lihua1+, CHEN Hongmei1, RUAN Huifeng2   

  1. 1. Department of Computer Science and Engineering, School of Information, Yunnan University, Kunming 650091, China
    2. Yunnan Police Officer Academy, Kunming 650223, China
  • Online:2015-08-01 Published:2015-08-06

摘要: 目标罪犯藏匿位置的预测是一个重要而艰巨的任务。提出了一种面向关系语境的目标罪犯藏匿位置预测方法。该方法主要通过在面向关系语境的社会网络中计算用户间的信任度得到目标罪犯的强关系子集,并根据所有用户的历史位置轨迹筛选出目标罪犯可能藏匿的候选位置子集,然后进行协同过滤计算,预测目标罪犯当前最可能藏匿的位置。这种方式融合了用户的社会关系及历史位置信息,有助于降低直接预测目标罪犯藏匿位置的盲目性和困难性。最后,利用模拟数据进行仿真实验,并对所提方法的有效性进行了验证。

关键词: 社会网络, 关系语境, 轨迹, 位置预测

Abstract: It is an important and challenging task to predict hiding locations of target criminals. This paper proposes a relation context oriented approach to predict hiding locations of target criminals. The proposed approach first finds the minimal strong tie subset by computing trust strength between users in relation context oriented social networks, and selects the candidate location subset that target criminals may hide based on users’ historic location trails, and then predicts the current most likely hiding locations of the target criminals by collaborative filtering computation. This way combines the social relationships and historic location information of users, thus it is helpful to abate the blindness and difficulties of predicting directly the hiding locations of target criminals. Finally, simulations on synthetic data are conducted to evaluate the effectiveness of the proposed approach.

Key words: social networks, relation context, trajectory, location prediction