[1] HUNG C C, PENG W C, LEE W C. Clustering and aggre-gating clues of trajectories for mining trajectory patterns and routes[J]. The VLDB Journal, 2015, 24(2): 169-192.
[2] ZHU J, JIANG W, LIU A, et al. Effective and efficient tra-jectory outlier detection based on time-dependent popular route[J]. World Wide Web: Internet and Web Information Systems, 2017, 20(1): 111-134.
[3] LI Z H, HAN J W, JI M, et al. MoveMine: mining moving object data for discovery of animal movement patterns[J]. ACM Transactions on Intelligent Systems and Technology, 2011, 2(4): 1-32.
[4] BICHICCHI A, BELAROUSSI R, SIMONE A, et al. Analysis of road-user interaction by extraction of driver behavior features using deep learning[J]. IEEE Access, 2020, 8: 19638-19645.
[5] YI B K, JAGADISH H V, FALOUTSOS C. Efficient retrieval of similar time sequences under time warping[C]//Proceedings of the 14th International Conference on Data Engineering, Orlando, Feb 23-27, 1998. Washington: IEEE Computer Society, 1998: 201-208.
[6] VLACHOS M, KOLLIOS G, GUNOPULOS D. Discover-ing similar multidimensional trajectories[C]//Proceedings of the 18th International Conference on Data Engineering, San Jose, Feb 26-Mar 1, 2002. Washington: IEEE Computer Society, 2002: 673-684.
[7] CHEN L, ?ZSU M T, ORIA V. Robust and fast similarity search for moving object trajectories[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, Jun 14-16, 2005. New York: ACM, 2005: 491-502.
[8] SU H, ZHENG K, WANG H Z, et al. Calibrating trajectory data for similarity-based analysis[C]//Proceedings of the 2013 ACM SIGMOD International Conference on Management of Data, New York, Jun 22-27, 2013. New York: ACM, 2013: 833-844.
[9] RANU S, DEEPAK P, TELANG A D, et al. Indexing and matching trajectories under inconsistent sampling rates[C]//Proceedings of the 31st IEEE International Conference on Data Engineering, Seoul, Apr 13-17, 2015. Washington: IEEE Computer Society, 2015: 999-1010.
[10] LI X C, ZHAO K Q, CONG G, et al. Deep representation learning for trajectory similarity computation[C]//Proceedings of the 34th IEEE International Conference on Data Engineering, Paris, Apr 16-19, 2018. Washington: IEEE Computer Society, 2018: 617-628.
[11] ALVARES L O, BOGORNY V, KUIJPERS B, et al. A model for enriching trajectories with semantic geographical information[C]//Proceedings of the 15th ACM International Symposium on Geographic Information Systems, Seattle, Nov 7-9, 2007. New York: ACM, 2007: 22.
[12] PARENT C, SPACCAPIETRA S, RENSO C, et al. Semantic trajectories modeling and analysis[J]. ACM Computing Surveys, 2013, 45(4): 1-32.
[13] YING J J C, LU E H C, LEE W C, et al. Mining user simi-larity from semantic trajectories[C]//Proceedings of the 2010 International Workshop on Location Based Social Networks, San Jose, Nov 2, 2010. New York: ACM, 2010: 19-26.
[14] BOGORNY V, RENSO C, DE AQUINO A R, et al. Constant-a conceptual data model for semantic trajectories of moving objects[J]. Transactions in GIS, 2014, 18(1): 66-88.
[15] SPACCAPIETRA S, PARENT C, DAMIANI M L, et al. A conceptual view on trajectories[J]. Data & Knowledge Engi-neering, 2008, 65(1): 126-146.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 5998-6008.
[17] LIU H, SCHNEIDER M. Similarity measurement of moving object trajectories[C]//Proceedings of the 3rd ACM SIG-SPATIAL International Workshop on GeoStreaming, Redondo Beach, Nov 6, 2012. New York: ACM, 2012: 19-22.
[18] XIAO X, ZHENG Y, LUO Q, et al. Inferring social ties between users with human location history[J]. Journal of Ambient Intelligence and Humanized Computing, 2014, 5(1): 3-19.
[19] FURTADO A S, KOPANAKI D, ALVARES L O, et al. Multidimensional similarity measuring for semantic trajectories[J]. Transactions in GIS, 2016, 20(2): 280-298. |