[1] LUXBURG U V. A tutorial on spectral clustering[J]. Statistics & Computing, 2007, 17(4): 395-416.
[2] JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
[3] MASCI J, MEIER U, CIRESAN D C, et al. Stacked convo-lutional auto-encoders for hierarchical feature extraction[C]//LNCS 6791: Proceedings of the 21st International Conference on Artificial Neural Networks, Espoo, Jun 14-17, 2011. Berlin, Heidelberg: Springer, 2011: 52-59.
[4] RIFAI S, VINCENT P, MULLER X, et al. Contractive auto-encoders: explicit invariance during feature extraction[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omni Press, 2011: 833-840.
[5] BALDI P. Autoencoders, unsupervised learning and deep archi-tectures[C]//Proceedings of the International Conference on Unsupervised and Transfer Learning Workshop, Bellevue, Jul 2, 2011: 37-50.
[6] YUAN F N, ZHANG L, SHI J T, et al. Theories and applica-tions of auto-encoder neural networks: a literature survey[J]. Chinese Journal of Computers, 2019, 42(1): 203-230.
袁非牛, 章琳, 史劲亭, 等. 自编码神经网络理论及应用综述[J]. 计算机学报, 2019, 42(1): 203-230.
[7] WAN J, WU F, HE Y B, et al. Clustering algorithm for high-dimensional data under new dimensionality reduction criteria[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 96-107.
万静, 吴凡, 何云斌, 等. 新的降维标准下的高维数据聚类算法[J]. 计算机科学与探索, 2020, 14(1): 96-107.
[8] TIAN F, GAO B, CUI Q, et al. Learning deep representations for graph clustering[C]//Proceedings of the 28th AAAI Con-ference on Artificial Intelligence, Québec City, Jul 27-31, 2014. Menlo Park: AAAI, 2014: 1293-1299.
[9] HUANG P, HUANG Y, WANG W, et al. Deep embedding network for clustering[C]//Proceedings of the 22nd Interna-tional Conference on Pattern Recognition, Stockholm, Aug 24-28, 2014. Washington: IEEE Computer Society, 2014: 1532-1537.
[10] XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 478-487.
[11] ZHENG H, FU J, MEI T, et al. Learning multi-attention convolutional neural network for fine-grained image reco-gnition[C]//Proceedings of the 2017 IEEE International Con-ference on Computer Vision, Venice, Oct 22-29, 2017. Wa-shington: IEEE Computer Society, 2017: 5219-5227.
[12] FU J, ZHENG H, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 4438-4446.
[13] VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jul 5-9, 2008: 1096-1103.
[14] RUMELHART D E, HINTON G E, WILLIAMS R J. Lear-ning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
[15] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313: 504-507.
[16] CHEN M M, XU Z X, WEINBERGER K, et al. Marginalized denoising autoencoders for domain adaptation[C]//Proceedings of the 29th International Conference on Machine Learning, Edinburgh, Jun 26-Jul 1, 2012. Madison: Omni Press, 2012: 1-8.
[17] CARON M, BOJANOWSKI P, JOULIN A, et al. Deep clustering for unsupervised learning of visual features[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Hei-delberg: Springer, 2018: 132-149.
[18] CHANG J, WANG L, MENG G, et al. Deep adaptive image clustering[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5880-5888.
[19] LI F F, QIAO H, ZHANG B, et al. Discriminatively boosted image clustering with fully convolutional auto-encoders[J]. Pattern Recognition, 2018, 83: 161-173.
[20] ZHANG S, GONG Y H, WANG J J. The development of deep convolution neural network and its applications on com-puter vision[J]. Chinese Journal of Computers, 2019, 42(3): 453-482.
张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482.
[21] DIZAJI K G, HERANDI A, DENG C, et al. Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5736-5745.
[22] YANG J W, PARIKH D, BATRA D. Joint unsupervised learning of deep representations and image clusters[C]//Pro-ceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 26-Jul 1, 2016. Washington: IEEE Computer Society, 2016: 5147-5156.
[23] XIE J Y, GAO H C, XIE W X. K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset[J]. Scientia Sinica Informationis, 2016, 46(2): 258-280.
谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法[J]. 中国科学: 信息科学, 2016, 46(2): 258-280.
[24] XIE J Y, GAO H C, XIE W, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
[25] KINGMA D P, BA L. Adam: a method for stochastic opti-mization[C]//Proceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015: 1-15.
[26] RUDER S. An overview of gradient descent optimization algorithms[J]. arXiv:1609.04747, 2016. |